
Registered Charity Number 207890

Accepted Manuscript

This is an Accepted Manuscript, which has been through the RSC Publishing peer 

review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior 

to technical editing, formatting and proof reading. This free service from RSC 

Publishing allows authors to make their results available to the community, in 

citable form, before publication of the edited article. This Accepted Manuscript will 

be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), 

which is identical for all formats of publication.

More information about Accepted Manuscripts can be found in the 

Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or 

graphics contained in the manuscript submitted by the author(s) which may alter 

content, and that the standard Terms & Conditions and the ethical guidelines 

that apply to the journal are still applicable. In no event shall the RSC be held 

responsible for any errors or omissions in these Accepted Manuscript manuscripts or 

any consequences arising from the use of any information contained in them.

www.rsc.org/materialsB

0959-9428(2010)20:1;1-A

ISSN 2050-750X

Materials for biology and medicine

 Journal of
Materials Chemistry B
www.rsc.org/MaterialsB Volume 1 | Number 1 | January 2013 | Pages 0000–0000

XXXXXXXXXXXX
Xxxx Xxxxx xxxXxxx Xxxxx
Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx

XXXXXXXXXXXX
Xxxx Xxxxx xxxXxxx Xxxxx
Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx

Journal of
Materials Chemistry B

View Article Online
View Journal

http://dx.doi.org/10.1039/c3tb00531c
http://pubs.rsc.org/en/journals/journal/TB


 1

Synthesis of Hydroxyapatite-Reduced Graphite Oxide Nanocomposites for 

Biomedical Applications: Oriented Nucleation and Epitaxial Growth of 

Hydroxyapatite 

 

Yi Liu, Jing Huang, Hua Li
&
 

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 

Ningbo 315201, China 

 

 
& Correspondence and requests for materials should be addressed to H.L. at 

lihua@nimte.ac.cn 

Tel: +86-574-86686224 

Fax: +86-574-86685159 

 

Abstract  

Regardless of its successful clinical practices, load-bearing implant applications of 

hydroxyapatite (HA) remain problematic due to its intrinsic property limitations. Recent 

findings of the promising biocompatibility of graphene imply the possibilities of it being 

potentially used as additives for HA-based composites with enhanced mechanical properties. 

Here we report HA-reduced graphite oxide nanocomposites synthesized by liquid precipitation 

approach and following spark plasma sintering consolidation. The reduced graphite oxide (rGO) 

consisted of 2-6 layers of graphene. Rod-like HA grains with the dimension of ~9 nm in 

diameter and 20-45 nm in length exhibited oriented nucleation and epitaxial growth on 

graphene flakes. The (300) plane of HA crystal formed a coherent interfacial bond with 

graphene wall and the section of graphene sheet built a strong interface with (002) plane of HA 

crystals. These structural features gave rise to enhanced densification and precluded grain 

growth of HA in the spark plasma sintered pellets. Fracture toughness of the HA-rGO 

composites reached 3.94 MPa.m1/2, showing 203% increase compared to pure HA. Crack 

deflection, crack tip shielding and crack bridging at the HA-rGO interfaces were disclosed as 

the major strengthening regimes in the composites. The enhanced mechanical properties 

together with the improved proliferation and ALP activity of the human osteoblast cells 

suggest great potential of the composites for biomedical applications.  

 

Key words: hydroxyapatite; reduced graphite oxide; epitaxial growth; properties; interfaces 
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1. Introduction 

Hydroxyapatite (HA) has been successfully utilized in orthopedic surgery for promoting fast 

fixation of bony tissues owing to its similarity in chemistry to human skeletal bone. Allowing 

direct apposition of host bony tissue, good osteoconductive, and osteoinductive capabilities 

offer HA a great advantage in clinical applications [1-5]. However, the intrinsic brittleness and 

low fracture toughness of bulk HA is yet a major hurdle that impedes its long-term functional 

service after clinical surgery under load-bearing conditions [5,6]. Mechanical performances of 

HA can be improved by incorporating second phase reinforcements like polymer [7-9], 

ceramics [10,11], and carbon nanotube [12,13] etc. Yet few of the materials that have been 

attempted for HA-based composites satisfy both favorable biocompatibility and sufficient 

strength. Preferable addition of biocompatible materials favors biological performances of HA. 

However, the extent to which the mechanical strength is enhanced is usually not sufficient 

enough to meet the need of high load-bearing implants [11]. Searching novel materials without 

sacrificing the mechanical and biological properties of HA has been a research focus in recent 

decades. Carbon nanotubes-reinforced HA composites were developed and significantly 

enhanced fracture toughness and biological performances have been reported [12,13]. 

However, potential toxicological risk is still a big concern for carbon nanotubes for potential 

biomedical applications, even though interesting progress has been made on alleviating the 

toxicity by, for example, competitive bindings of blood proteins [14,15]. As an alternative 

novel material, graphene has been attracting intense attentions due to its unique structural 

features and exceptional mechanical properties. Biomedical application is one of the exciting 

opportunities of graphene that inspired research community to explore extensively [16-21]. Of 

particular interests are graphene-based nanomaterials and their biotechnological investigations 

[22-28]. Graphene and its derivatives further showed capability of being functionalized with 

avidin-biotin [27], peptides [27,28], NAs [29,30], proteins [24,31-34], aptamers [27,35], small 

molecules [27,36], bacteria [27], and cells [27,37], suggesting the possibilities of them being 

employed for building up biological platforms, biosensors and biodevices. Fluorescence 

resonance energy transfer biosensors based on graphene were reported for sensing the 

substances ranging from small molecules and DNA to proteins and cells [29-36,38-41]. In 

contrast to carbon nanotubes, graphene can be synthesized in a relatively pure environment, 

which reduces the risk of impurity-induced toxicity. In the light of available scientific 

evidences pertaining to its biological performances, graphene might potentially be a good 

candidate for HA-based composites for biomedical applications. Synthesis of HA-graphene 

powders and fabrication of the bulk composites is yet to be systematically explored. 
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Nanotechnology is predominately directing the research of biomedical materials for attaining 

both sufficient mechanical properties and excellent biological performances. Significantly 

enhanced mechanical strength together with favorable biocompatibility has been achieved for 

nano-sized HA (nano-HA) [4,42,43]. Compared to conventional HA, nano-HA accomplished 

faster osteoblast proliferation and enhanced osteoclast activity of osteoblast cells on them 

[44,45]. The development of nanoparticles has been accompanied by the need for a suitable 

processing technique to retain the fine grain size in bulk materials. Due to simultaneous 

application of pressure, electrical current and rapid heating rate, spark plasma sintering (SPS) 

offers better densification of nanoceramic particles at a lower temperature and in a much 

shorter duration (generally few minutes) than conventional sintering techniques [46-48]. 

Studies have shown that SPS processed HA enhanced osteoblast cell proliferation as compared 

to conventionally sintered HA, proving SPS to be an appropriate technique for consolidating 

HA for biomedical application. In this study, HA-reduced graphite oxide composite powders 

were synthesized via a wet chemical approach. The HA-reduced graphite oxide composites 

were further consolidated by SPS processing. Microstructure characterization revealed oriented 

nucleation and epitaxial growth of HA nano grains on graphene sheets. Even distribution of the 

nano-sheets with 2-6 layers of graphene in the SPS HA-based pellets significantly enhanced 

the mechanical properties and osteoblast attachment and proliferation, shedding light on 

potential biomedical applications of the novel composites.   

 

2. Materials and Methods 

2.1. Synthesis of graphene and HA-graphene composites 

Large-scale reduced graphite oxide (rGO) was chemically synthesized from high purity flakey 

graphite. Graphite oxide was prepared by oxidation and exfoliation of graphite via the modified 

Hummer’s method [49,50]. Reduction of graphite oxide was subsequently carried out by 

thermal reduction processing at 200oC for 30 min in vacuum (0.1Pa). The as-received rGO was 

ultrasonically dispersed in 50 ml ultra-pure water for 120 hrs in a bath sonicator with 

the ultrasound power of 300 W. 0.25 mol Ca(NO3)2⋅4H2O was then added into the as-obtained 

rGO solution, followed by slowly adding 0.15 mol/50 ml NH4H2PO4 solution and adjusting the 

pH value to 11 by NH3·H2O. The mixed solution was mechanically stirred for 2 hrs and left 

overnight to settle. The wet chemical approach for synthesizing HA was based on the 

following chemical reaction: 

6(NH4)2HPO4 + 10Ca(NO3)2 + 8NH3·H2O → Ca10(PO4)6(OH)2 + 20NH4NO3 + 6H2O 

After complete reaction, the resulting slurry was then washed centrifugally with distilled water 

to remove ammonium hydroxide completely and got dried at 120oC. By accurately weighing 
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the rGO and controlling the stoichiometric synthesis of HA, the HA-rGO composite powders 

with different contents of rGO (0, 0.1wt.%, and 1.0wt.%) were typically produced. 

 

2.2. SPS consolidation 

The HA-rGO composites were further consolidated by SPS using graphite die (Sumitomo Coal 

Mining SPS system, DR SINTER Model 1050, Japan). The sintering was conducted at 950oC 

under a pressure of 30 MPa and a processing time of 3 min in vacuum (~5 Pa). The HA and 

HA-rGO pellets were 12 mm in diameter and ~4 mm in thickness. 

 

2.3. Characterization of microstructure 

Microstructure of the rGO, HA and HA-rGO powders and SPS pellets was characterized by 

transmission electron microscopy (TEM, FEI Tecnai F20, the Netherlands) and field emission 

scanning electron microscopy (FESEM, FEI Quanta FEG250, the Netherlands). Observation of 

HA-rGO interface in near-atomic-scale was carried out under high resolution transmission 

electron microscope (HRTEM). For the TEM characterization, the specimen preparation 

involved transferring the powder suspension in ethanol to the micro grids and letting the 

solvent evaporate. The number of graphene layers was comprehensively characterized by 

HRTEM and Raman spectrum (Renishaw inVia Reflex, Renishaw, Britain). Phase composition 

of the samples was analyzed by X-ray diffraction (XRD, D8 Advance, Bruker AXS, Germany) 

using CuKα radiation (λ=1.5406 Å) operated at 40 kV and 40 mA. The goniometer was set at a 

scan rate of 0.033o/s over a 2θ range of 20-60o. Fourier transform infrared spectroscopy (FTIR, 

Nicolet 6700, Thermo Fisher Scientific, USA) detection was also conducted. The infrared 

spectrum with a resolution of 4 cm and the scan number of 8 were adopted with a spectral 

region from 400 to 4000 cm-1. 

 

2.4. Assessment of mechanical properties 

Fracture toughness (KIC) of the SPS HA-rGO pellets was determined by using the indentation 

approach [51]. 1000 gf Vickers load was applied on the polished pellets with a loading time of 

10 s. A total of 10 points were collected for each sample. The test was conducted on Micro-

Vickers microhardness tester (HV-1000, Shanghai Lianer Testing Equipment Corporation, 

China). The elastic modulus of the HA and HA-rGO composites was measured by 

nanoindentation test carried out using nanomechanical test system (NANO G200, MTS, USA). 

The maximum indentation depth chosen for the present test was 1 µm. At least ten indentations 

were made for an average value for each sample.  
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2.5. Cell culture test 

Attachment, proliferation and differentiation of human osteoblast cells (HFOB 1.19 SV40 

transfected osteoblasts) on the HA-rGO composites were examined. Five specimens for each 

type of the samples were used for each test condition. Prior to the in vitro experiments, the 

cells were cultured in α-minimum essential medium (α-MEM) (SH30265.01B, HyClone, USA) 

supplemented with 10% heat-inactivated fetal bovine serum, 100 U/ml penicillin and 100 

µg/ml streptomycin in an atmosphere of 100% humidity and 5% CO2 at 37oC. The cells were 

seeded at 1×104 cells/ml in 96-well culture plates with 200 µl media contained in each well. 

Proliferation of the cells cultured on the sterilized pellets (1 cm in diameter) was analyzed 

using the methyl thiazole tetrazodium (MTT) assay. The MTT stock solution of 5 mg/ml 

(Sigma, St Louis, MO, USA) was prepared by dissolving MTT in PBS, filtered through a 0.2 

µm filter and stored at 4oC. Then the 96 well plate was removed from incubator and 20 µl 

MTT stock solution was added to each well. Cells were incubated for 4 hrs at 37oC in the 

atmosphere of 100% humidity and 5% CO2. After the incubation, the MTT solution was 

removed and replaced with 100 µl DMSO. The plate was rotated for 5 min to distribute evenly 

at room temperature, and then was read using 490 nm wavelength on a microplate reader 

machine (spectra max 190, MD, USA). For each type of the pellets, three samples were tested 

to get an average value and each sample was read for three times. For FESEM observation of 

the cells adhering on the surfaces of the samples, the cells after 24 hrs incubation were fixed in 

2.5% glutaraldehyde for 24 hrs, dehydrated gradually and coated with gold. Differentiation of 

the cells cultured on the samples was assessed by measuring their alkaline phosphatase (ALP) 

activity. The cells (1×104 cells/ml) were seeded on the specimens and cultured for 7 days. They 

were washed twice with PBS and lysed by three cycles of freezing and thawing program. The 

as-received aliquots of supernatants were subjected to ALP activity and protein content 

measurement by using an ALP kit and a micro-Bradford assay kit (Nanjing Jiancheng 

Biological Engineering Institute, China). The absorbance of the reaction product, p-

nitrophenol, was measured at the wavelength of 405 nm on the microplate reader machine.  

 

3. Results and Discussion 

3.1. Characteristics of the synthesized rGO and HA-rGO composites 

The as-received rGO standing on the copper grid shows wrinkled-paper-like morphology (Fig. 

1a). Further structural characterization by Raman spectroscopy demonstrates almost exclusive 

presence of graphene sheets in the sample (Fig. 1c). For comparison purpose, the Raman 

spectrum of the pristine flaky graphite is also shown. The first-order spectrum of the pristine 

graphite and graphene sheets are suggested by the G band at 1580 cm-1 and 1583 cm-1, and the 
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D band at 1333 cm-1 and 1329 cm-1, respectively. The second-order (two-photon) spectra at 

2678 cm-1 and 2647 cm-1 refer to 2D band of the graphite and rGO samples. As noticed from 

the spectrum of the synthesized rGO (Fig. 1c), the intensity ratio of D peak to G peak increases 

dramatically in comparison with that of the starting graphite (1.16 vs. 0.38), implying that the 

chemically oxidation and thermal reduction process have introduced considerable structural 

disorder in graphene lattice. It has been acknowledged that Raman spectrum could be used to 

assess the quality of graphene and to determine the number of graphene sheets by the position 

of 2D peak [52], that is, 2D peak shifts to lower wavenumber values for the rGO with less layer 

number of graphene. TEM observation (Fig. 1a) and FESEM images (data not shown) of the 

as-received rGO show that the size of the as-received rGO is around 1-2 µm, and the majority 

of the rGO consist of 2-6 layers of graphene as determined by the Raman spectroscopy 

measurements and HRTEM observation provided in later part (Fig. 2c). 

 

TEM picture of the synthesized HA showed rod-like shape for the HA nano particles (Fig. 1b). 

Further XRD analysis of the HA-rGO composites suggest the presence of crystalline HA and 

no trace of graphite or graphene oxide was detected (see Figure S1 in the Supplemental Data). 

The broad peaks indicate the state of HA as ultrafine nano-crystalline or being with lower 

crystallinity. The XRD diffraction peaks for rGO are not seen, most likely due to the fact that 

the monolayer structure of rGO exhibits irregular arrays of atoms in three dimensions. Instead, 

refined detection by FTIR (Fig. 1d) verified the presence of graphene sheets in the composites 

by the clear appearance of the absorption bands of methylene groups (CH2), which are inherent 

to rGO during the synthesis in this study, at around 2853 cm-1and 2926 cm-1. The C=O 

stretching band at 1720-1 is apparent for rGO on the curve for the starting rGO. Characteristics 

of graphene sheets were further evidenced by XPS detection (data not shown). The absorption 

bands at 1044 cm-1, 962 cm-1, 566 cm-1 and 475 cm-1 are attributed to characteristic absorption 

of PO4
3- in HA. The band at 3572 cm-1 corresponds to structural OH- group [1].  
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 7

 

Figure 1. TEM images and structure analyses of the synthesized rGO and HA-rGO composites, 

(a) TEM image of rGO showing wrinkled-paper-like morphology, (b) TEM image of HA 

particles synthesized via the wet chemical approach showing rod-like nanostructures, (c) 

Raman spectrum of the rGO (ii) with the comparison to that of graphite (i) indicating exclusive 

presence of graphene sheets in the synthesized sample, and (d) FTIR spectra of the rGO, pure 

HA and HA-1.0wt.%rGO composites. 

 

Further TEM observation revealed that rod-like HA nano grains intimately attach to graphene 

flakes (Fig. 2a). HA grains have the size of ~20-45 nm in length and ~9 nm in diameter. SAD 

pattern exhibited the typical polycrystalline diffraction pattern of HA (Fig. 2b). In addition, 

faint six-fold symmetry and polycrystalline diffraction pattern of graphene is also observed 

(Fig. 2b). The SAD pattern for graphene has been discussed elsewhere [53-55], which is due to 

the overlapping or folding together randomly of graphene in the HA-rGO composite powders. 

The interface between HA grain and graphene platelets was examined by HRTEM observation 

as per Fig. 2c. There is no obvious evidence indicating chemical reaction between HA and 

graphene sheets at their interfaces. It is instead very likely that HA and graphene sheets are 

connected by Van der Waals bonding. Nucleation of HA crystals probably originates on either 

graphene wall or the cross-section of graphene multi-sheets, followed by subsequent crystal 

growth along or perpendicular to the surface of graphene sheet. Surprisingly, Fourier transform 
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(FFT) and inverse-FFT (IFFT) analyses of the HRTEM images acquired at the HA-rGO 

interfaces disclosed crystallographic orientation (Fig. 2c), that is, HA grains grow along (211) 

plane and exhibit a lattice spacing of 0.282 nm. The (211) plane, along which HA crystals 

preferentially grow, and the surface of graphene walls form an angle of 27°. For HA crystal, 

the angle between the planes (300) and (211) of HA is 25° [1,56]. The above finding implies 

that the (300) plane of HA crystal is very likely parallel to the surface of graphene walls. 

According to the atomic structure of HA [1], its (300) plane contains Ca(II) atoms at each 

corner of the rectangle and the distance between each pair of Ca(II) atoms is 0.9418 nm and 

0.6884 nm, whereas the distance between two neighboring Ca(I) atoms in plane (100) is 0.9418 

nm and 0.3442 nm, respectively. In addition, it was revealed by HRTEM that the distance 

between adjacent graphene sheets is 0.347 nm. In fact, single layer graphene is constituted by 

carbon atoms arranged periodically in a hexagonal manner, and the nearest distance between 

two carbon atoms is 0.142 nm. Multilayer graphene sheets contain several graphene 

monolayers with the inter-wall distance of 0.34 nm [57-61]. 

 

Figure 2. TEM micrographs of the synthesized HA-rGO composite powders, (a) TEM image 

shows rod-like HA nano grains with the size of ~20-45 nm in length and ~9 nm in diameter 

adhering to graphene flakes with an intimate contact, (b) SAD pattern evidences presence of 

graphene and nano-HA (the faint diffraction rings of graphene were highlighted by the strong 

white dots), and (c) HRTEM image of the composite powders showing HA-graphene interfaces 

and FFT and IFFT analyses further reveal the lattice spacing of graphene nanosheets and HA at 

the interface and preferred orientation of HA crystals on graphene sheets. 
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Based on the above results, a schematic diagram is depicted illustrating the planes (300) and 

(100) of HA superimposing on the surface of graphene sheet (Fig. 3a). It has been well 

established that HA crystallizes in a hexagonal system with the cell parameters of a=b=9.418 Å 

and c=6.884 Å. HA structure is formed by a tetrahedral arrangement of phosphate (PO4
3-), 

which constitute the skeleton of the unit cell. Within the unit cell, phosphates are divided into 

two layers with the heights of 1/4 and 3/4, respectively, resulting in the formation of two types 

of channels along the c axis as denoted by A and B. The walls of channel A are occupied by 

oxygen atoms from phosphate group and calcium ions (calcium ions type II – Ca(II)), 

consisting of two equilateral triangles rotated 60 degrees relative to each other, at the heights of 

1/4 and 3/4 respectively. Channel B is occupied by other ions of calcium (calcium ions type I – 

Ca(I)). In each cell there are two such channels, each of which contains two calcium ions at 

heights 0 and 1/2 [1]. During the synthesis of HA at the presence of graphene sheets, HA 

crystals preferably align on graphene surface following minimum atomic distance mismatch. 

Along one side of the (300) plane of HA, the distance between the carbon atoms nearest to the 

Ca(II) atoms is 0.984 nm (between C2 and C3, Fig. 3a). As the distance between the matching 

Ca(II) atoms on the (300) plane of HA is 0.9418 nm, the mismatch (δ) between the interatomic 

distance of these two pairs of C and Ca atoms is ~0.04. Moreover, along the vertical direction, 

the distance between two carbon atoms, coinciding with the Ca(II) atoms of the superimposed 

(300) plane of HA, is ~0.71 nm. As such, the mismatch (δ) between the two superimposed pair 

of Ca (in HA) and Ca(II) atoms is 0.03. The mismatch (δ) along both directions is much lower 

than the incoherence limit of 0.25. Similarly, in the case of the (100) plane of HA crystal, the 

matching condition in the horizontal direction is the same as that for the (300) plane. However, 

along c-axis direction, the distance between two Ca(I) atoms in the (100) plane is 0.3442 nm. 

The distance between carbon atoms most close to it is 0.284 nm. Although the mismatch 

between two superimposed pair of Ca and C atoms is ~0.21, which is lower than the 

incoherence limit of 0.25, it increases the lattice strain compared with that for the (300) plane. 

Similar research on the interface of HA-CNT composites showed that the (211) plane in HA 

preferentially matches with CNT walls and the mismatch (δ) between the interatomic distance 

of C and Ca atoms is 0.09 [12]. Our study demonstrates that during the synthesis, the (300) 

plane in HA can naturally form a stronger and coherent interfacial bond with graphene wall, as 

suggested by the relatively smaller lattice mismatch (0.03). 

 

The schematic depiction shown in Fig. 3b illustrates the matching state of the cross-section of 

graphene nanosheets with the (002) plane of HA crystal. At the cross section of graphene 
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flakes, the multilayer walls are exposed with an inter-wall spacing of 0.34 nm. The lattice 

spacing of the (002) plane in HA is 0.344 nm. The lattice mismatch (δ) between the (002) plane 

of HA crystal and graphene walls is 0.01, which is obviously much lower than the incoherence 

limit of 0.25, inferring a strong bond between graphene at its cross and HA crystals. Good 

interfacial bonding can be achieved by small lattice mismatch (δ<0.25) which gives rise to 

minor lattice strain [62]. Absence or small measure of lattice strain in turn improves interfacial 

adhesion, which further enhances fracture energy of the interfaces. In this study, during the 

synthesis of HA, its (300) plane takes priority over (100) plane to match with the surface of 

graphene sheets. The open ends of graphene multi-sheets form relatively stronger interfaces 

with the (002) plane in HA crystals than other planes like (211). The strong and coherent 

interfaces are essentially the key for achieving competitive mechanical properties of the HA-

rGO composites. 

 

Figure 3. Schematic illustration of the matched atomic arrangement at (a) the interface between 

the planes (300) and (100) of HA and graphene surface, and (b) the interface between the (002) 

plane of HA and cross-section of graphene sheets. 

 

3.2. Characteristics of the HA-rGO pellets  

Further consolidation by SPS of the synthesized powders has accomplished dense structure of 

the HA and HA-rGO composites, which can be clearly seen from the SEM view of fractured 
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surfaces of the HA-rGO pellets (see Figure S2 in the Supplemental Data). Graphene sheets are 

homogeneously dispersed in the HA matrix with the length of 1-2 µm, showing comparable 

sizes to the starting nanosheets. Possible fluctuation in curvature in sub-micron-scale of the 

nanosheets in the SPS pellets needs further investigation. Close view of the structure by TEM 

shows dense interface between graphene sheets and HA grains (Fig. 4a). The fractured surface 

of the pure HA pellet displays intergranular fracture mode, and the grain size of 1.5~2µm is 

easily identified (see Figure S2 in the Supplemental Data). In contrast, the HA grains in the 

SPS HA-rGO composites show even grain size of ~100-200 nm, as exhibited in the TEM 

image (Fig. 4a). The addition of rGO makes the sizes of the HA grains smaller. Due to the fast 

consolidation feature of SPS, taking into account the processing temperature of 950oC and the 

short processing duration of 3mins, majority of HA did not melt (melting point of HA is 

1670oC). However, according to the working principle of SPS, melting at the contact areas 

between HA grains very likely takes place during the rapid sintering, which is mainly 

responsible for the grain growth of HA. In addition, grain growth of HA also occurs at elevated 

temperatures [4], even though HA did not reach melt state. As discussed in earlier part, HA 

crystals nucleated on graphene sheet and grew along the sheet with preferred orientation. It is 

speculated that graphene sheets stimulate nucleation of HA during its recrystallization at 

elevated SPS processing temperatures, which in turn effectively inhibits grain growth of HA 

along at least one direction, resulting in finer HA grain sizes. Furthermore, presence of the 

graphene sheets isolates contact of certain amount of HA grains, in turn inhibiting effectively 

the grain growth of HA. Phase analysis shows increased HA crystallinity (as indicated by the 

sharpened peaks) in the SPS HA and HA-rGO composites (see Figure S3 in the Supplemental 

Data). Part of HA has partially decomposed to beta tri-calcium phosphate (β-TCP). HA is a 

non-conducting ceramic with poor thermal conductivity of 1.25 W/m⋅K [63] and electrical 

conductivity of 7×10-7 S⋅cm-1 [64]. Since the graphite die is in contact with the surface of the 

sample, a thermal gradient is created between the internal and external regions, resulting in 

non-uniform microstructure, as suggested by the XRD analyses. Addition of rGO, a material 

with high thermal conductivity and good electrical conductivity, unsurprisingly increased the 

effective electrical conductivity and in turn reduced the electrical field gradient of the HA-

based composites. A very high temperature may be attained within the surface region of the 

SPS HA sample over the decomposition temperature of HA, usually higher than 1000oC [65], 

leading to localized decomposition. 

 

Microhardness values of the SPS pellets increased from 349±37Hv for the pure HA to 

398±43Hv for the HA-0.1wt.%rGO and 439±62Hv for the HA-1.0wt.%rGO pellets. The elastic 
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modulus and fracture toughness of the HA-rGO pellets as a function of content of rGO in the 

composites are shown in Fig. 4b. The elastic modulus values of the specimens increase with 

the increase of rGO content in the composites, the hardness and elastic modulus of the HA-

rGO composites are augmented by 25.8% and 47.6%, respectively. It is noted that the 

indentation-induced cracks are clear in the pure HA pellet, in contrast, however, there is slight 

cracking produced in HA-1.0wt.%rGO composite under the same load conditions (see Figure 

S4 in the Supplemental Data). The fracture toughness (KIC) of the HA-1.0wt.%rGO composite 

reaches 3.94 MPa⋅m1/2, showing 203% improvement compared to the pure HA, which is 

remarkably higher than the HA-based composites toughened by CNT, YSZ or Ti 

[11,12,66,67].  

 

 

Figure 4. TEM image showing intact graphene nano-sheets in the SPS HA-rGO pellets (a), and 

the addition of rGO significantly improved fracture toughness and elastic modulus of the SPS 

HA-rGO pellets (b). 

 

Microstructure characterization has given insight into the possible strengthening mechanisms 

by graphene sheets in the HA-based composites. As discussed earlier, addition of rGO resulted 

in formation of finer HA grains, indicating fine grain strengthening as a possible toughening 

regime. The ultimate strength (σu) of single-layered graphene sheet is 210 GPa in the armchair 

direction and 180 GPa in the zigzag one [68]. The graphene sheets at crack tip effectively 

inhibit further growth/propagation of the crack (Fig. 5a-1). Since graphene is a structural 

analogue of CNT with similar elastic modulus and tensile strength, the interfacial shear 

strength and reinforcement pullout energy for HA-rGO composites can be estimated based on 

the model proposed by Chen et al. for Al2O3-CNT system [69]. The computed pullout energy 

for graphene sheets from HA matrix is 3-40 J/m2, much higher than the fracture energy of 

monolithic HA, 1 J/m2 [70]. Cracks are therefore able to more easily propagate through HA 
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than along the HA-graphene sheets interfaces. In fact, crack intersects successive graphene 

sheets and directly deflects to HA matrix or propagates along HA-graphene sheets interface 

and then deflects to HA matrix (Fig. 5a-2), demonstrating the toughening mechanism of crack 

deflection. Furthermore, crack bridging offered by graphene sheets is also seen as the cracking 

is severe (Fig. 5a-3). Individual graphene flakes bridge the gap between the crack surfaces, 

preventing effectively widening of the crack. The graphene sheets remain intact, providing 

toughening via restraining against the crack tip to open and propagate further. The 

strengthening regimes associating with the morphological evidences are also schematically 

depicted and shown at the right panel of Fig. 5 (Fig. 5b). It is obvious that the extent to which 

the mechanical properties of the HA-rGO composites are enhanced is predominately dependent 

on the bonding strength of HA/graphene-sheet interfaces. Lahiria et al. have investigated the 

interfacial cohesive strength in HA-CNT and HA-BNNT systems by calculating pullout 

energy, and the values of 2-100 J/m2 and 1.5-22 J/m2 were reported for BNNT and CNT being 

pulled-out from HA matrix respectively [12,56]. As mentioned earlier, in our case, the 

computed pullout energy for the graphene sheets from HA matrix is 3-40 J/m2. Comprehensive 

elucidation of the pullout energy is to be reported in another paper.  

 

Figure 5. Inhibition of crack propagation by graphene nano-sheets in the SPS HA-rGO 

composites. (a) FESEM images showing termination of the crack growth by graphene nano-

sheets at the crack tip (a-1), deflection of the crack attained by graphene nano-sheets (a-2) and 

bridging of the crack by graphene nano-sheets (a-3). The corresponding regimes are 

schematically illustrated in the right panels (b-1,2). 
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Apart from the mechanical properties, nontoxicity and favorable biomompatibility of the HA-

rGO composites are essential for their potential applications in clinical surgery. Biological 

performances of the composites were preliminarily examined by cell culture test in this study. 

MTT assay shows enhanced proliferation of the osteoblast cells on the rGO-containing HA 

composites (Fig. 6a). Our finding is consistent with previous research efforts made by other 

researchers in recent years that graphene films encountered better adherence and proliferation 

of human osteoblasts and mesenchymal stromal cells on them than on silica [16]. For a better 

understanding of the effect of rGO on the behavior of the cells, effects of rGO on osteoblast 

differentiation were herein investigated by alkaline phosphate (ALP) activity assay, which is an 

early marker of osteoblast differentiation. In the case of ALP activity, the pure HA and the HA-

rGO composites had a significantly higher ALP activity than blank well plate, as shown in Fig. 

6b. The ALP expression level on the HA-1.0wt.%rGO composites is about 2 times of that on 

the pure HA. The unobvious correlation between graphene dose and the changes in ALP 

activity could be attributed to different differentiation states of the osteoblast cells, which has 

been revealed for the osteoblast cells proliferated on CNT [71,72]. It should be noted that the in 

vitro results we reported here are very preliminary and further comprehensive understanding 

about the biocompatibility of the novel HA-rGO composites is required. Although we should 

take particular cautions prior to introducing a new material for biological application and it is 

still far from final verdict yet on the biotoxicity of graphene, the unambiguous evidence 

provided here already sheds a bright light on the possibility of them being used for load-

bearing hard tissue replacement in clinical applications. 

 

 

Figure 6. Cell culture results for the SPS HA-rGO pellets. (a) The osteoblast cells cultured on 

the pellets surfaces shows enhanced proliferation behavior with increased content of rGO in the 

composites. (b) The osteoblast cells proliferated on the surfaces of the pellets shows 

significantly improved ALP activity as the content of rGO is 1.0wt.% in the composites. 

Page 14 of 19Journal of Materials Chemistry B

Jo
u

rn
al

 o
f 

M
at

er
ia

ls
 C

h
em

is
tr

y 
B

 A
cc

ep
te

d
 M

an
u

sc
ri

p
t

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

T
ec

hn
ol

og
y 

of
 C

hi
na

 o
n 

29
 J

an
ua

ry
 2

01
3

Pu
bl

is
he

d 
on

 2
8 

Ja
nu

ar
y 

20
13

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

3T
B

00
53

1C
View Article Online

http://dx.doi.org/10.1039/c3tb00531c


 15

 

4. Conclusions 

HA-reduced graphite oxide nanocomposite powders were synthesized by liquid precipitation 

approach. Comprehensive microstructural characterization showed that HA nano rods nucleate 

on and grow along graphene sheets with preferred orientation. The (300) plane in HA formed a 

naturally strong and coherent interfacial bond with the surface of graphene wall and the cross 

section of graphene builds with (002) plane in HA crystals a stronger interface due to the 

smaller lattice mismatch. Bulk HA-reduced graphite oxide pellets have been consolidated by 

SPS and showed significantly enhanced mechanical properties and in vitro cell behaviors. Fine 

grain strengthening, graphene flakes pullout on the fracture surface, crack deflection at the 

HA/graphene interface and crack bridging by graphene sheets were realized to play the key 

roles in strengthening the composites.  
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Figure captions: 

Figure 1. TEM images and structure analyses of the synthesized rGO and HA-rGO 

composites, (a) TEM image of rGO showing wrinkled-paper-like morphology, (b) 

TEM image of HA particles synthesized via the wet chemical approach showing 

rod-like nanostructures, (c) Raman spectrum of the rGO (ii) with the comparison 

to that of graphite (i) indicating exclusive presence of graphene sheets in the 

synthesized sample, and (d) FTIR spectra of the rGO, pure HA and HA-

1.0wt.%rGO composites.  

Figure 2. TEM micrographs of the synthesized HA-rGO composite powders, (a) TEM 

image shows rod-like HA nano grains with the size of ~20-45 nm in length and ~9 

nm in diameter adhering to graphene flakes with an intimate contact, (b) SAD 

pattern evidences presence of graphene and nano-HA (the faint diffraction rings 

of graphene were highlighted by the strong white dots), and (c) HRTEM image of 

the composite powders showing HA-graphene interfaces and FFT and IFFT 

analyses further reveal the lattice spacing of graphene nanosheets and HA at the 

interface and preferred orientation of HA crystals on graphene sheets. 

Figure 3. Schematic illustration of the matched atomic arrangement at (a) the interface 

between the planes (300) and (100) of HA and graphene surface, and (b) the 

interface between the (002) plane of HA and cross-section of graphene sheets. 

Figure 4. TEM image showing intact graphene nano-sheets in the SPS HA-rGO pellets (a), 

and the addition of rGO significantly improved fracture toughness and elastic 

modulus of the SPS HA-rGO pellets (b). 

Figure 5. Inhibition of crack propagation by graphene nano-sheets in the SPS HA-rGO 

composites. (a) FESEM images showing termination of the crack growth by 

graphene nano-sheets at the crack tip (a-1), deflection of the crack attained by 

graphene nano-sheets (a-2) and bridging of the crack by graphene nano-sheets (a-

3). The corresponding regimes are schematically illustrated in the right panels (b-

1,2). 

Figure 6. Cell culture results for the SPS HA-rGO pellets. (a) The osteoblast cells cultured 

on the pellets surfaces shows enhanced proliferation behavior with increased 

content of rGO in the composites. (b) The osteoblast cells proliferated on the 

surfaces of the pellets shows significantly improved ALP activity as the content of 

rGO is 1.0wt.% in the composites. 
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