Full length article

CoFe₂O₄ coated carbon fiber paper fabricated via a spray pyrolysis method for trapping lithium polysulfide in Li-S batteries

Xiaohua Feng, Qian Wang, Rongrong Li, Hua Li

ARTICLE INFO

Keywords:
CoFe₂O₄ coating
Carbon fiber
Shuttling effect
Li-S batteries
Battery performances

ABSTRACT

Here we report the construction of CoFe₂O₄ coating on carbon fiber and the coated paper was used as the interlayer between the separator and cathode of Li-S batteries. The amorphous CoFe₂O₄ coating was deposited by the industry-oriented spray pyrolysis technique and carbon fiber was completely enveloped by the coating. Compared to the non-coated carbon fiber, the coated carbon fiber as the interlayer exhibits a superior reversible capacity of 1086 mAh g⁻¹ at moderate current of 0.1C and a low decay rate in the capacity of 0.043% per cycle after 1000 cycles at 1C. Excellent long-term cycling life and rate capacity were also achieved through the coated interlayer. The specially designed interlayer showed remarkable capability to trap effectively the intermediate LPS (lithium polysulfide). The significantly inhibited “shuttle effect” of LPS would give insight into designing and making the interlayer by using new coating materials for enhanced performances of the Li-S batteries.

1. Introduction

Compared to the commercial batteries, Li-S batteries have high theoretical energy density of 2600 Wh kg⁻¹, high theoretical specific capacity of 1675 mAh g⁻¹, and the natural abundance, environmental friendliness and low cost of sulfur [1]. Li-S batteries would therefore be a strong candidate for the next generation of batteries to meet the increasing energy storage demand of electronics products. However, incomplete active S utilization, poor Coulombic efficiency, and fast capacity degradation persist as the major concerns for the batteries for complete active S utilization, poor Coulombic efficiency, and fast capacity degradation persist as the major concerns for the batteries. The ultimate consequences are the electrolyte interphase [9,10]. The significant suppression of shuttle effect and causes loss of active S [8], in turn triggering increase electrolytic viscosity, enhanced lithium anode surface passivation and formation of an unstable solid-electrolyte interphase [9,10]. The ultimate consequences are performance decay of the batteries in terms of deteriorated cycle stability and high-rate capacity. It is therefore essential to immobilize the dissolved intermediates LPS for Li-S batteries during operation. To date, a variety of techniques have been attempted to tackle the LPS issue. Among the effective ways, encapsulating sulfur into nanostructured carbon [5,11] or its modified derivatives [12] is claimed promising in stabilizing the LPS and electrolyte within the cathode region. Addition of a modified interlayer between the cathode and the separator is also found useful to inhibit and even trap the LPS [13]. It is reported that a simple adjustment of Li-S battery configuration by placing a bifunctional microporous carbon paper in between cathode and separator can improve the active material utilization and capacity retention [14]. The insertion of the microporous carbon interlayer decreases the internal charge transfer resistance and localizes the soluble LPS species [14]. The extra layer like various carbonaceous materials could act as physical spatial obstacles suppressing effectively the spreading of LPS [15,16], yet delaying the transfer rate of Li⁺. Carbonaceous materials usually demonstrate substantial capacity improvement over the first few hundred cycles, but they suffer significant decay upon long term cycling due to the weak interaction between LPS and carbon [17]. Therefore, chemical adsorption and chemical reaction must be taken into account for capturing the LPS by forming chemical bonds between metal oxide and LPS. A series of metal oxides such as TiO₂ [18], SnO₂ [19], ZnO [20], MnO₂ [21], V₂O₅ [22], CuO, Co₃O₄, Fe₂O₃ and their
low state oxides [23–26] with multiple specified structures have been used to confine LPS. Elongated cycling life and specific capacities have been reported. Apart from the mono metal oxides, polymetallic oxides containing two different metal ions also exhibited exciting electro-chemical activities [27]. Iron-based spinel CoFe2O4 (CFO) one of the oxides that are competitive in semiconducting properties, chemical constancy, mechanical inflexibility, natural abundance, and eco-friendliness [28–32]. It is anticipated that the polar/hydrophilic nature of CFO favors its strong chemical bonding with LPS and in turn confines its diffusion.

Spray pyrolysis is a well-established technique for depositing metal oxides such as ZnO [17], TiO2 [33,34], Fe2O3 [35], CuO [36], SnO2 [37], Fe2(MoO4)3 [38] etc. Taking into account the cost efficiency and ease of large-scale thin film fabrication [39], glass substrate is usually employed for relevant investigation. Thermal decomposition temperature of most oxide precursors lies in the range of 100–300 °C, below the oxidation temperature of carbon fiber. In this work, carbon fiber was used as substrate for CFO coating deposition. The CFO coating showed excellent electrical conductivity, complex physical space framework and good wettability. Combination of carbon fiber and CFO coating provided a dual-block confined interlayer structure, facilitating the transport of electrons, spatial obstacle of polysulfide and chemical adsorption dissolved LPS during the discharging process. Significantly increased capacity, enhanced long-term cycling stability and rate capability along with a lowered voltage barrier have been achieved.

2. Materials and methods

2.1. Preparation of CFO coated carbon fiber

Prior to the coating deposition, the carbon fiber substrates were cleaned in turn with hydrochloric acid and distilled water. The precursor solution was prepared by mixing ferric nitrate Fe(NO3)3·9H2O and cobalt nitrate CoCl2·6H2O in double distilled water with the molar ratio of 2:1. The solution was freshly prepared to avoid recrystallization of the starting materials that may block the spray pyrolysis nozzle before spraying. The CFO coatings were deposited on the pretreated carbon fiber substrate (5.0 cm × 3.0 cm) using the spray pyrolysis technique. To obtain homogeneous, well crystalized and reproducible CFO coatings, spray parameters were optimized. The key parameters, substrate temperature (400 °C), spray rate (1 ml/min), distance between substrate and nozzle (30 cm), nozzle diameter (0.3 mm), and pressure of the compressed air (2 bar) were selected and kept constant during the spraying. The basic reaction for formation of the CFO coatings was given by [40]:

\[
\text{CoCl}_2 \cdot 6\text{H}_2\text{O} + 2\text{Fe(NO}_3)_2 \cdot 9\text{H}_2\text{O} \rightarrow \text{CoFe}_2\text{O}_4 + 2\text{HCl} \uparrow + 23\text{H}_2\text{O} \uparrow + 4\text{NO}_2 \uparrow + \frac{1}{2}\text{O}_2 \uparrow
\]

After the coating deposition, the CFO coated samples were laminated into 16 mm diameter disk for assembling the battery.

2.2. Cell assembly

Sulfur cathode slurry was prepared by mixing 50 wt% of sulfur powder, 40 wt% of carbon black (Super P) and 10 wt% of polyvinylidene fluoride (PVDF) binder in an N-methylpyrrolidinone (BMP) solution and stayed overnight. The slurry was tape-casted onto carbon fiber substrates.
paper and dried in air oven for 12 h at 60 °C, followed by being cut into circular electrodes with the sulfur loading of about 1.8 mg/cm². The cathode disks and CFO interlayers with the diameter of 16 mm were dried in a vacuum oven for 12 h at 60 °C before assembling the cell. The electrolyte comprised 1.0 M lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) and 5% LiNO₃ salts dissolved in dimethoxymethane (DME) and 1,3-dioxolane (DOL) (GuoTaiHuaRong Co., Ltd.) at a 1:1 volume ratio. The concentration of sulfur in the electrolyte was about 20 μL/mg. CR2032 coin cells were assembled with sulfur cathodes, electrolyte, CFO coated interlayers, polypropylene separators (Celgard) and lithium foils.

2.3. Assessment of the performances

The wettability of the samples was measured by OCA-20 type contact angle test platform (Germany). Chemistry of the samples was characterized by X-ray diffraction (XRD) (D8 Advance diffractometer, Bruker, Germany) operated using Cu Kα radiation. XPS measurements were carried out on an Axis Ultra DLD X-ray photoelectron spectrometer using monochromatic Al Kα (1486.6 eV) radiation. Morphology of the coatings was examined by scanning electron microscopy (SEM, JSM-7800F) equipped with EDX. Relatively long-term cycling stability, rate capacity and discharge/charge performances were evaluated through a Neware Battery Measurement System with the voltage range of 3.0–1.8 V (Vs. Li⁺/Li). Electrochemical impedance spectroscopy (EIS) of the cells was recorded with a CHI660E electrochemical workstation (Shanghai ChenHua Co., Ltd.) over the frequency range of 100 kHz to 100 mHz.

3. Results and discussion

The CFO coatings were successfully deposited on carbon fiber (Fig. 1). It is noted that under photograph, the CFO coated interlayers are grey dark in color (Fig. 1a) as compared to the uncoated carbon fiber. Original carbon fiber paper showed hydrophobic feature with a contact angle of 140° (Fig. 1b), indicating its poor surface wettability. However, after the deposition of CFO coating, remarkably altered wettability was recognized for the carbon fiber paper with a sharply decreased water contact angle 17° (Fig. 1c). This high hydrophilicity is beneficial to attract the terminal sulfur of dissolved LPS. The coating exhibited excellent adsorption performances for LPS during the 12 h stewing (the inset photo in Fig. 1c). These properties were likely attributed to the synergistic roles played by carbon fiber and the CFO coating, which should not block charge transfer and the electrochemical redox reaction at the adsorption interface. SEM and EDS elements mapping patterns of the CFO coating suggest that the carbon
The fiber substrate was completely enwrapped by the coating (Fig. 1d), the porous morphology and good electrical conductivity of the interlaced carbon fiber would facilitate penetration of electrolyte and fast electron/ion transport. The CFO coating showed uniformly small ripple-like surface features (Fig. 1e), which is inherited from the pyrolysis spraying processing. Further element analyses (the inset table in Fig. 1e) revealed the atom ratio of Co to Fe of ~1:2, which is consistent with the original proportion of the precursors. The appearance of little Cl element is likely attributed to the remained chlorinated cobalt or hydrochloric acid used for cleaning the substrate before the spraying. Fortunately it seems that the presence of Cl did not affect the adsorption performance of the CFO coating. In addition, uniform distribution of the element C, Co, Fe, O in the selected areas was also realized (Fig. 1f–i), which further suggests unique coating deposition on carbon fiber.

Fig. 4. (a) Rate performance of CFO coated interlayer and Reference, (b) Charge/discharge voltage profiles of CFO coated interlayer in rate test. (c) Cycling performances at current rate of 0.5C, and (d) 0.2C of the two interlayer. (e) Long-term cycling capacity and columbic efficiency of CFO coated interlayer at 1C.
XRD was used to confirm the structure of the prepared CFO coating (Fig. 2a). Compared to the carbon fiber substrate, a little peak at 311° and [220] of the cubic CoFe2O4 were emerge with a low intensity and broad width, that meant a low crystallinity of the CFO coating, showed an amorphous structure. XPS analysis was carried out to investigate the components and elemental valences of the CFO coating (Fig. 2b–f). Fig. 2b showed the wide scan survey spectra of CFO coating which presented Co2p, Fe2p, O1s and Cls. The XPS characteristic peaks of Co2p located at 780.7 eV and 796.0 eV respectively, and two shake-up satellite peaks at 784.4 eV and 804.1 eV dictated the strong presence of Co2+ (Fig. 2c). Fig. 2d showed the characteristic signals of Fe 2p at 711.4 eV and 724.9 eV which were due to Fe2p 3/2 and Fe2p1/2, at the position of 715.9 eV was a satellite peaks of the Fe2p. The results indicated the presence of Fe3+ and Co2+ in the coating. O1s spectra indicated three peaks at 530.1 eV, 531.6 eV and 533.6 eV denoted as lattice oxygen which was bound to metals, defects and the hydroxyl group present respectively (Fig. 2e). Cls spectra peak at 284.8 eV and 285.6 eV and 288.6 eV meant the C–C, C–H and C=O bond respectively in the carbon fiber (Fig. 2f).

Further electrochemical testing showed that the CFO coated and uncoated carbon fiber exhibited almost the same Ohm impedance values (Fig. 3a), indicating that the introduction of thin CFO layer did not trigger obvious changes in Ohm resistance of the cell. In this configuration cell, the CFO coated interlayer could work as an upper current collector for the S cathode, enhancing the active material utilization and thereby raising the specific capacity of the cell. The redox potential of the LPS lie in the range 2.1 V ≤ E ≤ 2.4 V versus Li/Li+ (Fig. 3b), this is corresponding to the other works [2, 41]. The CFO coated carbon fiber have a low redox potential (1.87 V) versus Li/Li+ (Fig. 3c), below the redox voltage of soluble LPS, according to the theory previous [2], CFO is redox inactive towards LPS, only to bind LPS via polar interaction.

To further clarify the blocking effect of the new interlayer on dissolved polysulfide, the performances of the assembled cells were evaluated (Fig. 4). The testing was carried out based on a coin cell configuration with no interlayer (labeled as Ref) and carbon fiber interlayer (Ref-C) as the reference samples. The discharge specific capacities and columbic efficiencies acquired under different current rates (Fig. 4a), it was noted that the average specific capacities of the CFO-coated interlayer reached 1086, 987, 855, 739, 664 and 604 mAh g−1 at 0.1, 0.2, 0.5, 1.0, 1.5 and 2C respectively under the sulfur loading of about 1.8 mg cm−2. The high discharge capacity of 0.1C demonstrated the enhanced active material utilization by the CFO-coated carbon fiber interlayer. Moreover, the capacities of 645, 706 and 818 mAh g−1 were recovered when the current density switched back to 1.5, 1.0 and 0.5C, a bit lower than those measured before the current switching, suggesting well reversible rate cycling performance.

To further clarify the blocking effect of the new interlayer on dissolved polysulfide, the performances of the assembled cells were evaluated (Fig. 4). The testing was carried out based on a coin cell configuration with no interlayer (labeled as Ref) and carbon fiber interlayer (Ref-C) as the reference samples. The discharge specific capacities and columbic efficiencies acquired under different current rates (Fig. 4a), it was noted that the average specific capacities of the CFO-coated interlayer reached 1086, 987, 855, 739, 664 and 604 mAh g−1 at 0.1, 0.2, 0.5, 1.0, 1.5 and 2C respectively under the sulfur loading of about 1.8 mg cm−2. The high discharge capacity of 0.1C demonstrated the enhanced active material utilization by the CFO-coated carbon fiber interlayer. Moreover, the capacities of 645, 706 and 818 mAh g−1 were recovered when the current density switched back to 1.5, 1.0 and 0.5C, a bit lower than those measured before the current switching, suggesting well reversible rate cycling performance.

To further clarify the blocking effect of the new interlayer on dissolved polysulfide, the performances of the assembled cells were evaluated (Fig. 4). The testing was carried out based on a coin cell configuration with no interlayer (labeled as Ref) and carbon fiber interlayer (Ref-C) as the reference samples. The discharge specific capacities and columbic efficiencies acquired under different current rates (Fig. 4a), it was noted that the average specific capacities of the CFO-coated interlayer reached 1086, 987, 855, 739, 664 and 604 mAh g−1 at 0.1, 0.2, 0.5, 1.0, 1.5 and 2C respectively under the sulfur loading of about 1.8 mg cm−2. The high discharge capacity of 0.1C demonstrated the enhanced active material utilization by the CFO-coated carbon fiber interlayer. Moreover, the capacities of 645, 706 and 818 mAh g−1 were recovered when the current density switched back to 1.5, 1.0 and 0.5C, a bit lower than those measured before the current switching, suggesting well reversible rate cycling performance.

Charge/discharge voltage profiles of the CFO-coated interlayer exhibited two discharge plateaus that were consistent with the cyclic voltammogram plots (Fig. 4b). The upper discharge plateau indicated the transformation of elemental sulfur to soluble long-chain LPS ions S8−2 (4 < n < 8), and the lower discharge plateau suggested the transformation of long-chain LPS to short-chain LPS, Li2S2 and Li2S, which were also the inherent discharge platform curve of lithium-sulfur batteries [5,42].

The galvanostatic cycling testing was performed at 0.1C for activation followed by 0.5C and 0.2C, respectively (Fig. 4c–d). For the CFO-coated interlayer examined at 0.2C, an initial capacity of 955 mAh g−1 and a retained capacity of 708 mAh g−1 after 200 cycles were obtained, corresponding to the capacity retention of ~74%. With the carbon fiber interlayer, the capacity retention was almost identical compared with the CFO-coated interlay, presumably suggesting that the simply inserted physical barrier layer could improve the cycling stability of the cell. These results were in agreement with other published results [43,44]. However, the reference sample without the interlayer only delivered a capacity retention of 65%, which was lower than that of the cell comprising the CFO-coated interlayer. During the 0.5C cycling, the CFO-coated interlayer showed an initial capacity of 873 mAh g−1 and the capacity retention of 76% after 500 cycles (Fig. 4d). While, 478 mAh g−1 and 327 mAh g−1 were maintained with a capacity retention of 62%, 50% after 500 cycles by the cell with the carbon fiber interlayer and no interlayer cell respectively. It nevertheless indicated that the presence of the CFO coating not only increased the specific capacities but also enhanced resistance of the capacity against decay. Therefore, long-term cycling of the cells containing the CFO-coated interlayer was assessed with 1C-rate at sulfur loading of 1.72 mg cm−2. An initial peak capacity of 733 mAh g−1 and a capacity retention of 57% after 1000 cycles were realized (Fig. 4e). The calculated degradation ratio during the overall 1000 cycles was 0.043% per cycle. The charge efficiency of the first several cycles of 0.2C, 0.5C and 1C was higher than 100%, which could be explained by the re-utilization of the sulfur core in cathode. This outstanding cycling stability was regarded to be resulted from the chemical adsorption of the CFO coating. The wrapped corrugated coating would inhibit the dissolution of LPS in the electrolyte. Chemisorption enabled spatially located Li2S precipitation on the surface of the CFO coating, in turn transferring the LPS to a host current collector of excellent conductive carbon fiber. This ultimately gives rise to significantly improved cell performances.

4. Conclusions

CoFe2O4 coatings were deposited by spray pyrolysis technique on carbon fiber, which acted as the interlayer in Li-S batteries. The coating homogeneously wrapped the wall of the carbon fiber and excellent hydrophilic had been achieved. Significant spatial physical blocking and chemical adsorption of dissolved LPS in the assembled battery cell was realized, which prevented effectively the shuttling of the LPS. The confined LPS on the CFO coating surface together with the carbon fiber acted as a host current collector, which was reutilized in the charge/discharge process. These phenomena further improved effectively the utilization of the active materials and specific capacities of the cell. Significantly improved electrochemical performances, a remarkable low decay rate of 0.043% per cycle during 1000 cycles at 1C-rate under the sulfur loading of 1.72 mg cm−2 had been achieved. The results shed light on developing innovative fabrication method and research strategies using the binary metal oxide coating materials for next generation Li-S batteries.

Acknowledgements

This work is supported by National Natural Science Foundation of China through Grant No.51802322, Ningbo Natural Science Foundation Grant No.2018A610082 and Ningbo Key High-Tech R&D “2025” Program Grant No.20181ZDYF020113.

References

[9] X. Liu, et al., Nanostructured metal oxides and sulfides for lithium-sulfur batteries,
[40] N. Karthigayan, et al., Synthesis and characterization of NiFe2O4, CoFe2O4 and CuFe2O4 thin films for anode material in Li-ion batteries, Nanomater. Nanotechnol. 7 (2017).