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Abstract
It is known that ZnO is an n-type semiconductor with photocatalytic performances under ultraviolet
light irradiation. Constructing a superior structure for a modified electron band has been one of the
major research goals for photocatalytic ZnO. Here we report a new technical route for making nano-
ZnO coatings with a porous topographic morphology. The coatings were fabricated by plasma
spraying the mixture of suspension and solution liquid precursors. Pre-loading of ZnO and Zn
powders in the precursor was carried out for the purpose of tailoring the structure of the coatings. The
coatings in micron thicknesses showed a porous skeleton and a fluffy top layer consisting of ultrafine
ZnO grains. Photocatalytic testing by measuring the degradation of methylene blue revealed
significantly enhanced activities of the coatings deposited using the ZnO/Zn loaded precursor. The
hybrid-structured ZnO coatings exhibited a narrowed band gap and modified oxygen defects as
compared to those deposited from the single liquid feedstock. The results shed light on a one-step
easy thermal spray fabrication of polytropic nanostructured functional coatings by employing solid
powder-loaded liquid as the starting feedstock.

Keywords: nano zinc oxide, liquid plasma spray, ZnO/Zn loaded precursor, photocatalytic
activity, oxygen defect

(Some figures may appear in colour only in the online journal)

1. Introduction

Zinc oxide (ZnO) is a well-studied metal oxide with extensive
applications in optoelectronics, sensors, biomedicine, and the

pharmaceutical industry [1]. It is a wide band gap n-type
semiconductor with a high excitation energy (60 mV), giving
it the ability to sustain large electric fields and stable optical
transmission [2]. In practical industrial production, diverse
ZnO with specific features was developed in the form of film
or coating, rather than powder or bulk [3–7]. For instance,
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ZnO can serve as a photocatalyst under light irradiation to
deal with waste water contaminated by organic compounds or
heavy metal ions [8–12]. The use of a ZnO as surface coating
has shown the competence of the catalyst’s recycling ability
[10, 11, 13, 14]. The high efficiency of a photocatalytic
degradation reaction could be obtained by optimizing the
design of the photocatalytic reactor and no by-products would
be generated owing to the ecofriendly mineralization of pol-
lutants [15]. The microstructural features of ZnO coatings are
therefore critical for their photocatalytic activities.

The microstructural characteristics of ZnO coating, such
as grain size, crystallite orientation, and resistivity, are pre-
dominately determined by the fabrication techniques [16–18].
ZnO coatings have been prepared by a variety of routes, such
as chemical vapor deposition [19], physical vapor deposition
[20], atomic layer deposition [21], the sol-gel technique [22],
and spray pyrolysis [23]. There are urgent requirements for a
fast and feasible one-step deposition technique for making
ZnO coatings with appropriate microstructures for advanced
photocatalytic performance.

Thermal spray is known for its ease of mass production
of surface coatings and simplicity of constructing desired
complex coating structures. However, spraying nano-ZnO
coatings from pre-synthesized powder usually includes diffi-
culties in controlling their structures, since the microstructure
of the coatings is strictly restricted by the shape and size of
the starting ZnO powder [24–26]. The splat-packed lamellar
structure of thermal sprayed coatings presumably limits their
functional applications, since in most cases a large specific
surface area is essentially required for the coatings. A liquid
plasma spraying process, for instance suspension plasma
spray (SPS) and solution precursor plasma spray (SPPS), is a
promising route for fabricating coatings with high throughput
and good control over their microstructures [27]. Specific
coating microstructures can be anticipated as a solution or
suspension is used as the feedstock for thermal spraying, from
which tuned nanostructures can be obtained through a series
of physical and chemical reactions or in situ synthesis [28].
Compared with SPS, SPPS is more efficient in the one-step
synthesis of nanostructured coatings [29]. Some studies have
shown tailored coating structures by altering the starting
liquid feedstock or optimizing the spray parameters [30–34].

SPPS allows making a thin coating thickness per pass and
successive spraying can cause grain coarsening, which
effectively limits the growth of a vertical structure. Zhang
et al reported SPPS as a novel approach to making a nanos-
tructured ZnO coating with oxygen defects for gas sensing
applications [35–37], and Yu et al tried a hybrid technical
route to fabricate ZnO nanorods and nanowires [38–40]. Yet
there are few studies available on fabricating thick porous
ZnO coatings for functional applications.

Porous coating nanostructures were fabricated in our
previous studies by using adequate additives in the liquid
feedstock [41–43]. In this study, we propose a new method to
make ZnO coatings with novel structures by combining a
well-dispersed suspension with a solution precursor as the
spraying feedstock. Nano-ZnO or Zn particles were loaded in
the hybrid liquid for the spraying. The chemistry and
microstructure of the as-sprayed coatings are examined and
their influence on photocatalytic properties is also assessed
and elucidated.

2. Materials and methods

Zinc acetate dihydrate (Aladdin Reagent Corporation, China)
solution with a concentration of 0.5 mol l−1 was prepared as
the solution precursor (liquid B: ZnO-SPPS), while equal
proportions of deionized water and ethyl alcohol were mixed
as the solvent. Before the homogenization of the solution, an
adequate amount of acetate acid was added into the hybrid
solvent to avoid hydrolysis. Nano zinc oxide powder
(30±10 nm) or zinc powder (100 nm), as shown in figure 1,
was dispersed in the solvent (liquid A: ZnO-SPS, 40 g l−1) or
the as-prepared solution (liquid C: ZnO–ZnO, liquid D: ZnO–
Zn, 8 g l−1) through magnetic stirring and ultrasonic treat-
ment. To acquire steady suspension, polyethylene glycol
(PEG-400) and polyvinylpyrrolidone (PVP) were added as
the surfactant and binder with a pre-concentration of 20 and
10 wt%, respectively. Prior to the fabrication of the coatings,
the substrate 316L stainless-steel plates with the dimension of
20×20×2 mm were pre-treated by degreasing and sand-
blasting using 30 mesh corundum and 0.7 MPa com-
pressed air.

Figure 1. Morphology of the nano zinc oxide powder (a), (b) and the zinc powder (c) used for the preparation of the suspension.
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For the spraying processing, a plasma gun (XM-80SK,
Xiuma Spraying Machinery Co. Ltd, Shanghai, China) was
fixed with a six-axis robot. A homemade radial liquid feed-
stock was integrated from a peristaltic pump and stainless-
steel needles with an inner diameter of 0.3 mm. During the
spraying, the liquid was delivered 2 mm away from the gun
exit into the downstream of the plasma torch. The spray
parameters are listed in table 1.

The phase composition of the as-sprayed coatings was
analyzed by x-ray diffraction (XRD; D8 Advance, Bruker
AXS, Germany) using Cu Kα radiation (λ=1.5406 Å)
operated at 40 kV and 40 mA with a scan rate of 0.1°/s over a
2θ range of 10–90°. The organic component retained in the
coatings was characterized by Fourier transformed infrared
spectroscopy (FTIR; Nicolet 6700, Thermo Fisher Scientific,
USA) with a resolution of 4 cm−1 and a scan range of
4000–400 cm−1. The microstructure of the powder and the
coatings was examined using a field emission scanning
electron microscope (FEG Quanta FEG 250, the Nether-
lands). To evaluate the light absorption range of the coatings,
ultraviolet–visible (UV–vis) diffuse reflectance spectra (DRS)
was recorded on a Lambda 950 spectrophotometer (Perki-
nElmer, USA) using BaSO4 as the reference. As a direct band
gap semiconductor, the optical energy gap of ZnO can be
acquired from a Tauc plot, which follows the equation αhν
=A(hν-Eg)n, where α is the absorption coefficient, hν is the
photon energy, A is a constant, Eg is the optical band gap, and
n is chosen as 1/2 for a direct semiconductor [44]. Photo-
luminescence spectroscopy (PL; with He-Cd 325 nm laser)
was utilized to detect the donor defects in the coatings.

The photocatalytic performances of the as-sprayed coat-
ings were evaluated by measuring the degradation of
methylene blue under irradiation of both UV light (Philips,
TL-D, λ=365 nm) and artificial sunlight (Xe lamp,
GXZ500). The power of the UV light and artificial sunlight
are 18W and 500W, respectively. For the testing, the sam-
ples were immersed in 15 ml of methylene blue solution
(5 ppm) contained in a cold trap, while the lamp was placed
15 cm above it. Under magnetic stirring, the whole reaction
system was kept in the dark for 1 h to reach an adsorption-
desorption equilibrium. Subsequently the degradation process
was monitored at a 1 h illumination interval by measuring the
absorption intensity using a UV–vis spectrophotometer
(MAPADA, UV-3300) operated with an absorbance wave-
length of 664 nm.

3. Results and discussion

The coated ZnO-SPS, ZnO-SPPS, ZnO–ZnO, and ZnO–Zn
were fabricated from ZnO suspension, zinc acetate dihydrate
solution, zinc acetate dihydrate-ZnO suspension, and zinc
acetate dihydrate-Zn suspension, respectively. For the liquid
precursor using plasma spraying, different organic additives
were selected for homogenization and stabilization of the
liquid, which resulted in variable coating structures. As
revealed from the XRD patterns shown in figure 2, all the
diffraction peaks are indexed as a wurtzite structure of ZnO
(JCPDS#36-1451), and no obvious peaks ascribable to
impurity and contaminants were detected except for the aus-
tenite phase of the 316L substrate. The suspension plasma
sprayed coating (ZnO-SPS) showed a broadened curve with
the weakest peak intensity, suggesting the retention of the
initial nano-ZnO powder. On the contrary, the solution pre-
cursor plasma sprayed coatings showed the highest narrowed
peak, illustrating well crystallinity of ZnO grains. Further-
more, the coatings deposited using a hybrid feedstock showed
similar XRD patterns. It is noted that there was no remaining
zinc in the ZnO–Zn coatings. This is likely due to significant
metallic oxidation during the high temperature processing.
Further crystallographic structural information was also sug-
gested by the position of the three main peaks (figure 2). The
ZnO-SPS coating and the ZnO–Zn coating exhibited peaks
located at 31.73°, 34.36°, and 36.21°, corresponding to the
(100), (002), and (101) planes, respectively. While the other
samples showed peak shifting toward higher 2θ angles.
According to the Bragg equation, a higher 2θ means smaller
d-spacing, which may be triggered by residual stresses or
crystalline defects such as vacancies. There is no doubt that
the good crystalline structure of the ZnO-SPS coatings was
derived from the starting ZnO powder. Surprisingly, regard-
less of the similarity in liquid feedstock, the ZnO–Zn coating
containing the oxidized zinc showed minor or almost no peak

Table 1. Plasma spray parameters.

Parameter Measure

Standoff distance 80 mm
Traverse speed 0.4 m s−1

Primary gas (Ar) 0.75 MPa, 2300 m3 h−1

Secondary gas (H2) 0.35 MPa, 12 m3 h−1

Net energy 25 kW
Liquid feed rate (ml min−1) 100

Figure 2. XRD patterns of the ZnO coatings deposited on the 316L
substrate (the inset shows the XRD peaks of the ZnO crystal planes
(100), (002), and (010)).
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shift as compared to the ZnO–ZnO coating. The ZnO
resulting from the thermal evaporation of zinc always exhibits
favorable crystallinity [20]. It is worth noting that the addition
of ZnO in the zinc acetate solution resulted in a remarkable
peak shift for the coating when compared with the ZnO-SPPS
coating. During the thermodynamic non-equilibrium process,
the lattice oxygen in the ZnO lattice was prone to loss,
resulting in certain lattice defects. For the ZnO–ZnO sus-
pension spraying coating, a small amount of nano-ZnO par-
ticles are loaded on the basis of ZnO-SPPS. In the process of
spraying, there was no chemical reaction and partial melting
changed these uniformly dispersed nanoparticles. However,
there is a certain lattice mismatch between the two sources of
ZnO nanoparticles. Consequently, some lattice defects are
formed in the as-sprayed ZnO coating. For the ZnO–Zn
coating, low melting point Zn particles were introduced into
the suspension. As an active metal, Zn could melt or even
evaporate sharply in the plasma jet. The ZnO formed by
oxidation on the surface of the Zn particles is similar to that of
metal vapor reactive deposition coating, and its crystallinity is
high, which reduces the diffraction peak deviation caused by
defect ZnO.

A certain amount of organic binder in the as-sprayed
coatings was recognized as detected by FTIR (figure 3). The
broad peak located at ∼3400 cm−1 is attributed to the O–H
stretching vibration of adsorbed water. The peaks located at
2952 and 1653 cm−1 are assigned to the –CH2– stretching
vibration and the –C=O– stretching vibration, respectively,
both of which suggest the residue of PVP [45]. As for the
samples derived from the acetate solution, the shoulder peak
relating to the surface absorption water at 3400 cm−1 is
shallow owing to to the less addition of PVP, whose nature is
moisture absorption. The peaks between 2250 and 2500 cm−1

are an asymmetric stretching vibration of CO2 in the atmos-
phere. The other three samples share similar curves with
specific peaks at 1520 and 1400 cm−1, which refer to the
antisymmetric stretching vibration and symmetric stretching
vibration of the carboxylate group separately [46]. The IR

peaks at ∼1020 and ∼870 cm−1 indicate the in-plane −CH3

rock vibration and carbonate out-of-plane bending vibration,
evidencing non-pyrolyzed precursors or intermediates [47].
The IR inspection suggests retained organics from the starting
precursor solution, which act as a surfactant for the suspen-
sion and carboxylate or carbonate for the solution.

The as-sprayed coatings differ in topography (figure 4)
and cross-sectional morphology (figure 5). The suspension
coating (ZnO-SPS) exhibited a flat surface morphology and
almost no pores were seen (figure 4(a-1)). The coating well
retained the characteristics of the starting powder (figure 4(a-2)
versus figure 1(b)), and few agglomerated spheres were
recognized. The solution precursor coating (ZnO-SPPS)
showed a uniform cauliflower-like topography with 5–20μm
aggregates (figure 4(b-1)), which were accumulated by the
nanograins with a size of ∼100 nm (figure 4(b-2)). The coat-
ings deposited using the hybrid liquid feedstock showed ana-
logous structures. Both the ZnO–ZnO and the ZnO–Zn
coatings exhibited a double-layered morphology comprising
the typical clusters and fluffy top layer of ultrafine nanograins
(∼20 nm) (figures 4(c) and (d)).

To further characterize the spatial structure of the coat-
ings, their fractured cross-sectional morphology was also
examined (figure 5). The suspension coating showed a rar-
efied layer with an average thickness of ∼10 μm (figure 5(a)),
and agglomerated particles with solidified cores were
observed. The ZnO-SPPS coating showed tightly packed
clusters with a dense bottom structure consisting of a well-
molten powder. A certain amount of pores and vacancies
were recognized at the root of each cluster. These structural
features directly influence the photocatalytic activities of the
coatings.

It is noted that the coatings made by the hybrid liquid
spray route showed a porous skeleton-like structure. Both
coatings were composed of ultrafine grains on their top layers.
Micron-sized pores in between the agglomerates within the
bottom zone and nano-sized pores within the top layer were
recognized. The ZnO–Zn coating showed larger-sized pores
and a tighter integral framework than the ZnO–ZnO coating.

To further elucidate the effect of the loading of the par-
ticles in the starting feedstock, the individual agglomerates
realized within the coatings were evaluated (figure 6). It is
suggested that the networking structure of the ZnO–ZnO
coating (figures 6(a) and (b)) was generated from well-molten
ZnO particles, which play the role of the binder. The binder
offers the capability of assembling hollow microspheres [48]
and the crashed shell was retained to form the porous skele-
ton, which caused the formation of the porous structure of the
ZnO–Zn coating in this case. However, due to the unevenly
distributed size of the Zn particles, large Zn particles over
several micrometers survived and were embedded into the
coating, even though the outer layer of the particles was
presumably oxidized or affiliated by ultrafine ZnO grains
(figures 6(c) and (d)). It has been reported that ZnO synthe-
sized from thermal evaporation of Zn tends to bear an irre-
gular shape [49]. In our case, the remaining Zn particles
underwent subsequent melting, evaporation, and oxidation

Figure 3. IR spectra of the ZnO coatings.
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during the spraying, giving rise to the formation of large voids
at the bottom layer of the coating.

The absorption curves acquired from UV–vis diffuse
reflectance measurement showed more intensive adsorption of
the coatings in UV range than in visible light range, and the

coating made from the Zn loaded precursor showed the best
adsorption (figure 7(a)). It is known that absorption is closely
related to surface roughness. The coating deposited using the
ZnO powder tablet exhibited shifts in the absorption edge,
which likely suggests variation in its band structure.

Figure 4. Surface morphology of the ZnO-SPS coating (the white arrow in (a-2) points to the typical aggregated ZnO particles) (a-1, a-2), the
ZnO-SPPS coating (b-1, b-2), the ZnO–ZnO (c-1, c-2), and the ZnO–Zn coating (d-1, d-2).

Figure 5. Fractured cross-sectional morphology of the as-sprayed ZnO coatings, (a) the ZnO-SPS coating, (b) the ZnO-SPPS coating,
(c) ZnO–ZnO coating, and (d) the ZnO–Zn coating.
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Calculation of the forbidden band gap (Eg) values using a
Tauc plot indicated that all the coatings except the ZnO-SPS
coating have a narrow band gap ranging from
3.068–3.093 eV. It has been claimed that the shift of the
absorption curve suggests a crystal defect in ZnO–Zn coating
[50]. These three coatings are mainly composed of ZnO
in situ pyrolyzed with an ultrahigh temperature plasma torch
and Ar-H2 reducing atmosphere. During the SPPS process,
the liquid droplets are usually subjected to evaporation, pre-
cipitation, and pyrolysis. Coatings with rich oxygen vacancies
are easy to deposit due to the rapid heat-cooling process with
reducing atmosphere [35, 51]. Additionally, the nano-sizing
effect of semiconductors usually helps obtain an oxygen
defect state [52]. As for the ZnO-SPS coating, it is likely that
the initial particles are annealed during the spraying. The
scanning electron microscopy images and the XRD spectra
without peak shifting confirmed the calcined state of ZnO in
the ZnO-SPS coating. As a result, the calcination-related
defect-free coating gave rise to the band gap widening as
shown in figure 7(b).

The photocatalytic performances of the ZnO coatings
were assessed by measuring the degradation reaction of
methylene blue under the irradiation of a UV light and an Xe
lamp. All the coatings showed favorable degradation of the
dye with a similar degradation rate of 80% after 6 h of UV
illumination (figure 8(a)). The ZnO-SPPS coating performed
the best among the coatings in terms of the degradation rate of

the dye, and further analysis based on the pseudo first order
reaction kinetics [61] indicated the somewhat worse perfor-
mance of the ZnO-SPS coatings (figure 8). Compared with
the catalytic results reported in other literatures (table 2), the
catalytic effect we obtained is of medium level.

To clarify the impact of the structural features of the
coatings on their photocatalytic performances, their crystal
defects and active surface states were examined by PL
spectrometry conducted using a 325 nm He-Cd laser emission
as the excitation source. All the coatings showed a sharp peak
and a broad peak covering the visible light range (figure 9(a)).
The UV peaks are located at 380 nm, which matches the band
gap of ZnO (∼3.2 eV). This peak is ascribed to free-exciton
emission and is referred to as near band edge (NBE) emission
[52]. The NBE intensity of the ZnO–Zn coating sample was
much higher than the other three, indicating its good crys-
tallinity [62]. This feature can also be traced in its XRD
pattern with respect to curve stiffness. Visible emission of
ZnO is usually derived from crystal defects, which are
referred to as deep level (DL) emission [63]. When comparing
the emission intensity ratio of DL to NBE (inset of
figure 9(a)), the ZnO–ZnO coating showed the highest ratio
while the ZnO–Zn coating ranked the last. The DL/NBE
value indicates the defect level of the coatings. There is no
doubt that the well-crystallized ZnO–ZnO coating has rare
crystal vacancies. The PL emission is the result of the
recombination of excited electrons and holes, and the lower

Figure 6. Typical morphology of the hybrid liquid sprayed ZnO–ZnO coating (a) and the hybrid liquid sprayed ZnO–Zn coating (c), (b) the
porous skeleton structure of the ZnO–ZnO coating, and (d) the typical aggregated particles within the ZnO–Zn coating.
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PL intensity indicates the lower recombination rate of photo-
generated electrons and holes [64, 65]. As discussed pre-
viously, the photocatalytic reaction is proportional to the
recombination rate of photo-generated electrons and holes.
Hence, a higher PL intensity would bring about poorer pho-
tocatalytic performances [66]. The fluorescence of the
ZnO-SPS and the ZnO-SPPS coatings exhibited a bias toward
the orange light region (597–622 nm), while the hybrid
sprayed ZnO–ZnO and ZnO–Zn coatings mainly responded
to the green light region (492–577 nm). For further invest-
igation into the discrepancy of the fluorescence distribution,
peak separation was applied to analyze the specific emission
peaks covering varied light regions.

According to the literature that has studied PL emission,
the actual curves were separated into five peaks by a Gaussian
approximation (figures 9(b)–(e)). There is a good match
between the cumulative curves and the corresponding tested
curves. The five peaks are referred to as A–E: A (380 nm
wavelength) and B (400 nm wavelength) were in the UV
region, C (510 nm), D (560 nm) and E (650 nm) were in
accordance with the green, green-yellow, and orange-red

emissions, respectively. The peak located at 380 nm (A)
represents the NBE emission [67–71] and the adjoining peak
(B) was reported to be relevant to the electron transition from
the bottom of the conduction band to the Zn vacancy level
(CB)→VZn [72]. Green emission is the most commonly
observed defect emission in nanostructured ZnO, and it is
often attributed to a singly ionized oxygen vacancy ( +V0 )
[73, 74]. A non-radiative electron captured from CB by +V0
leads to an unstable state that recombines with a photoexcited
hole in the VB [74]. Similarly, a doubly charged oxygen
vacancy ( ++V0 ) state undergoes radiative recombination with a
CB electron to yield PL of approximately 2.20 eV (564 nm)
[75]. More importantly, the grain boundary-induced depletion
regions lead to the formation of a deeply trapped state.
Besides, the orange-red emission (643 nm) has been assigned
to excess (surface) oxygen in the work of Studenikin et al
[23].

The emission intensity of each fitting curve was recorded
(figure 9(f)). Unlike the peaks A and B, peak C of the ZnO-
SPS and the ZnO-SPPS coatings is negligible as compared to
the ZnO–ZnO and the ZnO–Zn coatings. The other peaks
share similar trends from peak D to peak E (figure 9(f)). It is
noted that the ZnO–ZnO coating has higher green emission
(C, D) than the ZnO–Zn coating, suggesting its more severe
oxygen poor state. It is clear that the ZnO/Zn loaded pre-
cursor solution as the starting feedstock resulted in ZnO
coatings with enhanced PL emission in the green light region,
which indicates altered oxygen defects in the coatings as
compared to traditional SPS/SPPS coatings.

During the suspension plasma spraying, the coatings
obtained the evenly distributed grains from the pre-synthe-
sized powder. The solid ZnO/Zn particles underwent limited
heat input and physical reaction due predominately to the
solvent evaporation. This well explains the good crystallinity
and scarce vacancies of the ZnO-SPS coatings. Owing to the
broad band gap, strong oxidation-reduction potential is
anticipated in photocatalytic reactions. As for the solution
precursor sprayed coatings, the typical oxygen-deficient fea-
ture would give rise to crystal lattice disorder and donor
defect in the electron band. However, the coarsened ZnO
grains also likely means an elongated depletion layer, in turn
hindering the transmission of photo-generated carriers from
internal to boundary, and the photocatalytic reactions would
be weakened consequently.

After the loading of the solid particles into the solution
precursor, the coatings exhibited dominant typical SPPS
coating features like the nanostructures. The nano-sized ZnO
particles loaded in the starting liquid provided an adhering
skeleton for the coatings, rather than promoting crystalline
orientation for zinc acetate pyrolysis during the in situ reac-
tions. Consequently, the hybrid architecture brought about the
possibility of forming crystal defects (grain boundary), which
is suggested by the remarkable shifting of the XRD peaks and
the absorption edge in the UV–vis DRS. Furthermore, the
intense DL emission in the PL spectra verified the existence
of mass defects, probably the oxygen vacancies +V0 and ++V0
in the ZnO–ZnO coatings. The loading of the Zn particles in
the starting liquid precursor enhanced the crystallization of

Figure 7. (a) UV–vis DRS of the ZnO coatings, and (b) the
corresponding Tauc plots of the coatings (the inset in figure lists the
calculated Eg values).
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the major phases in the coatings through thermal oxidation of
Zn, which occurred during the spraying. This eventually
decreased the DL/NBE ratio. The unevenly distributed Zn
particles pre-dispersed in the precursor had two typical par-
ticle sizes: 100 nm and several micrometers. The former
helped construct a porous skeleton with the assistance of
organic additives and the latter were partially oxidized or
evaporated by successive heating. The tuned nanostructures
and structural defects triggered by the ZnO/Zn loading in the
liquid precursor already showed a significant impact on the

photocatalytic activities of the coatings. This novel technical
route provides insight into the design and thermal spray
fabrication of nanostructured functional coatings for various
applications.

4. Conclusions

ZnO coatings with nanograins and peculiar bimodal struc-
tures were efficiently one-step fabricated by a liquid

Table 2. Comparison of the photocatalytic properties of the ZnO films.

Materials Methods Degradation References

ZnO film on conducting glass Electro-spray 86.5%, 120 min, high concentration MB; 96.0%,
120 min, low concentration MB

[53]

ZnO nanocomposite coating film Electrophoreted 58%, 180 min, removal of 2-chlorophenol [54]
ZnO-coated multi-walled carbon
nanotubes

Sol process 97%, 30 min, removal methyl orange [55]

ZnO thin films Spin coating method 95%, 270 min, removal rhodamine-B [56]
ZnO thin films Sol-gel dip-coating

method
74%, 240 min, removal MB [57]

TiO2-ZnO (5%) thin films on the surface
of polycarbonate

Dip-coating 87%, 24 h, removal MB and methyl stearate [58]

ZnO thin film Slow hydrolysis method 76%, 180 min, removal nitrophenols [59]
Cu doped ZnO thin films Sol-gel dip-method 95%, 480 min, removal MB [60]
ZnO coating Thermal spraying 80%, 360 min, removal MB Our work

Figure 8. Degradation rate of methylene blue in the presence of the ZnO coatings under the irradiation of a UV light (a) and an Xe lamp (b);
and the plots of −ln(Cx/C0) versus irradiation time are also shown for the coatings illuminated under a UV light (c) and an Xe lamp (d), the
insets list the linear fitting results.
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precursor plasma spray. The addition of solid ZnO/Zn
particles in the starting precursor solution resulted in the
formation of a skeleton architecture and the modified surface
state of the coatings. The hybrid liquid sprayed ZnO coat-
ings exhibited a double-layered porous structure with
ultrafine nanograins being retained at the uppermost layer.
Compared to the traditional suspension or solution precursor
sprayed coatings, these coatings showed a remarkably
enhanced optical response and corresponding photocatalytic
activities under UV and simulated sunlight irradiation. The
promoted photocatalytic performances were revealed to be
related to oxygen defects existing in the coatings as trig-
gered by the ZnO or Zn particles pre-loaded in the starting
suspension. The results provide insight into tailoring the
structures of liquid thermal sprayed coatings by adjusting
the starting liquid feedstock through mixing micron-/nano-
sized particles.
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