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a b s t r a c t   

In this paper, a series of compound materials with different proportions of rare earth neodymium (Nd) 
doped M-type barium ferrite (BaM) and the mixture Nd-BaM with graphene oxide (GO) are prepared 
through the sol-gel method and high-energy ball milling route. The surface morphology, composition and 
electromagnetic properties of those materials are analyzed through XRD, SEM, TG, Raman and the vector 
network analyzer. It is found that the Nd-BaM particle is adhered on the surface of GO with the nanometer 
size. The electromagnetic performance can be severely affected by the doping amounts of Nd and the 
blending amounts of GO. Moreover, the microwave absorption performance of the compounds is studied in 
the frequency range of 2–18 GHz. For Nd0.15-BaM/3%GO, the minimum reflection loss is − 82.07 dB at 
12.65 GHz and the scope of the effective absorption band is 6.08 GHz with a thickness of 2 mm. Because of 
its good impedance matching, the interface polarization and electron polarization between Nd-BaM and 
GO, the electromagnetic wave occurs multiple reflection in this material. Compared with pure BaM or BaM/ 
GO, the Nd substituted BaM/GO has excellent microwave absorption performance, which has a certain 
prospect in the microwave absorbing field. 

© 2021 Published by Elsevier B.V.    

1. Introduction 

Nowadays, with the development of science, technology and 
communication equipment, electromagnetic waves permeate our 
lives. For example, wireless network, TV and radio can produce 
electromagnetic waves, and electromagnetic waves have become the 
fourth largest source of pollution in the world [1,2]. Excessive elec
tromagnetic waves can damage human health [3], the environment 
in which we live and the electrical equipment which we use [4]. 
Therefore, high-performance microwave absorbing material has 
been emerging [5,6]. 

Among them, M-type barium ferrite (BaM) shows strong cap
ability of microwave absorption [7], because of its high magneto
crystalline anisotropy field and large magnetic loss [8], stemmed 
from its hexagonal magnetoplumbite structures with a hard mag
netic property. The common synthetic routes of BaM are sol-gel  
[9,10], co-precipitation [11], solid phase reaction [12,13] and micro
emulsion [14,15] etc. Compared with other hexagonal ferrites, BaM 
has a wider effective absorption band. However, it is of high density  
[16], poor oxidation resistance and poor thermal stability. It can 
cause agglomeration due to dipole interaction between particles, 
which has negative effects on its magnetic loss [17]. These draw
backs strongly limit the application of BaM [18]. 

In order to improve the electromagnetic wave absorption per
formance of BaM, ion doping and material mixture are the common 
means to elevate the properties. 

From the Table 1, many metal ions are selected to dope into BaM 
in order to improve the absorbing performance. The doping of ions 
can improve the absorbing properties of the material on the reflec
tion loss and effective absorption band. Even if the same ion is 
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doped, under different preparation conditions, the particle size, 
dispersibility and purity of barium ferrite are various, which leads to 
different reflection loss properties. Normally, rare earth metals is of 
good electromagnetic properties. Replacing some Fe3+ ions in BaM 
with rare earth ions of larger ionic radius will cause lattice distor
tion, which may improve the dielectric properties of BaM [30]. It is 
also found that the partly replacement can prohibit the growth, re
duce the size and direction coercive force of crystal grains, which 
may be beneficial to the electromagnetic properties of BaM [31]. So 
we select Nd as the dopant, because Nd atom has a special elec
tromagnetic structure and many unpaired electrons. These unpaired 
electrons can generate magnetic moments when they move on the 
orbit, which may greatly increases the magnetism of BaM [32]. 

BaM with carbon materials is an alternative way to improve the 
microwave absorption performance. Generally, nano carbon mate
rials have excellent properties, such as excellent dielectric proper
ties, high specific surface area, low density and high mechanical 
strength, which have certain benefits to the improvement of wave 
absorbing performance. A single magnetic material or a single di
electric material cannot meet the impedance matching, so it is ne
cessary to combine nano carbon materials. Reduced graphene oxide 
(rGO) is a commonly used compounding agent in different propor
tions through different compounding approaches. It’s reported when 
the content of rGO is 6%, the reflection loss of the sample reaches 
− 52.21 dB at 10.72 GHz, and the effective absorption band is 
2.92 GHz through sol-gel method. With the addition of rGO, the 
saturation magnetization of BaM decreases and the polarization of 
the interface increases [33,34]. Beside rGO, the addition of other 
oxides such as Fe3O4 can effectively increases the heterogeneous 
interface, which is beneficial to the enhancement of interface po
larization. The minimum reflection loss of rGO/BaM/Fe3O4 reaches 
− 46.04 dB at 15.6 GHz with a thickness of 1.8 mm [35]. Also, special 
microstructure may improve the dielectric properties and enhance 
the interface polarization of the BaM. It’s reported that the nano 
expanded graphite (EG), carbon nanotube (CNT) and BaM compound 
form a sandwich three-dimensional network microstructure 
through the sol-gel method and self-growing route, the minimum 
reflection loss of CNT/EG/BaM reaches − 45.8 dB at 14.1 GHz with a 
thickness of 1.0 mm [36]. 

In this study, graphene oxide (GO) is selected as an additive to 
BaM. GO is a derivative of graphene-based materials, the oxidation 
process makes GO chemically stable. rGO is reduced on the basis of 
GO with the loss of oxidizing functional groups. There are lots of 
oxygen functional groups on the surface and edges of GO, such as 
hydroxyl, epoxide, carboxyl and other functional groups. These 
functional groups can be used as polarization centers to attenuate 
electromagnetic waves [37]. Also, GO has similar surface properties 
and layered structure to multilayer graphene [38]. By using the 
special structure of GO and the combination of ferrite materials, we 
get the synergistic reinforced composite material, which may im
prove the impedance matching of graphene materials. Certainly, the 
use of sheet GO can alleviate the agglomeration of BaM particles. 

In view of the advantages of rare earth elements and nano- 
carbon materials, this research uses sol-gel method to replace Fe3+ 

with rare earth Nd3+, which may change the magnetocrystalline 
anisotropy field of ferrite and increase the electromagnetic loss of 
the material in the magnetic field. After replacing Fe3+ with Nd3+ of 
larger ion radius, the lattice constant of the material may increase 
and the dielectric loss may increase [39,40]. Then, mixing Nd-BaM 
with GO through ball milling, the dielectric loss may increase again. 
The Nd-BaM/GO also have a certain complex permittivity and per
meability, which promotes impedance matching, so that the elec
tromagnetic wave in the material may effectively attenuate. 
Therefore, the purpose of this paper is to study the effect of Nd 
doping on the microwave absorption performance and the optimal 
ratio between GO and Nd-BaM for the application of electromagnetic 
wave absorption materials. 

2. Materials and methods 

2.1. Original materials 

GO (purity: 95%) is purchased from Nanjing XFNANO Materials 
Tech Co. Ltd, China. Ferric nitrate (Fe(NO3)3·9H2O, purity: 98.5%), 
neodymium nitrate (Nd(NO3)3, purity: 99.9%), barium nitrate (Ba 
(NO3)2, purity: 99%), citric acid (purity: 99.5%) and ammonium hy
droxide (NH3·H2O, concentration: 25–28%) are all purchased from 
Sinopharm Chemical Reagent. 

Table 1 
Summarizes the microwave absorption performance of BaM doped with different ions.         

Material Method RLmin/dB The frequency of RLmin/GHz EAB/GHz d/mm Ref.  

Ni, Zr-BaM Solid-state reaction -60.6 About 15.9 7.68 2.1 [19] 
Co-BaM Co-precipitation -16 17.0 / 1.5 [20] 
BaM Less than − 10 / / 
Mn, Co, Ti-BaM Solid-state reaction -40.2 14.9 7.0 2.3 [21] 
BaM -27.4 12.34 0.14 3.9 
Mn, Ti, Co, Ni-BaM Sol-gel -52.8 13.4 5.8 (< − 15 dB) 1.8 [22] 
Cu, Mg, Zr-BaM Co-precipitation -14.4 9.2 4 3.3 [23] 
BaM Less than − 10 / / / 
Al-BaM Self-propagating combustion -34.76 14.57 / / [24] 
Cr-BaM -27 13.26 
BaM -25 / 
Mn, Cu, Ti-BaM Conventional ceramic technique -51.78 18.78 2.79 (< − 20 dB) 1.8 [25] 
BaM -5.7 17.75 / 1.8 
Eu-BaM Sol-gel -43 15.6 / 2 [26] 
BaM -16 8.8 / 2 
La-BaM Electrospinning Heat treatment -23.03 2 12.6 2 [27] 
BaM Less than − 10 / / / 
Cu, Ti-BaM Sol-gel -37 16.7 2.5 1.6 [28] 
BaM Less than − 10 / / / 
Co-BaM Solid-state reaction -32.1 11.2 5 2 [29] 
BaM -10.3 About 11 / 1.5    
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2.2. Synthesis of materials 

Preparation process of Nd doped BaM: Fe(NO3)3·9H2O, Nd(NO3)3, 
Ba(NO3)2 and citric acid are taken as precursor. The proportional Fe 
(NO3)3·9H2O, Nd(NO3)3 and Ba(NO3)2 are dissolved in a small 
amount of deionized water and the molar ratio between them is (12- 
x): x: 1, x is equal to 0, 0.05, 0.1, 0.15, 0.2. Citric acid and metal ions 
(molar ratio is 1:1) are added to the solution, into which ammonium 
hydroxide is slowly added to adjust pH to 7.0. Then, the solution is 
heated in a water bath at 80 ℃ and kept for 6 h with continuous 
vigorous stirring. The obtained gel is moved to the muffle furnace, 
heated from room temperature to 200 ℃ at a heating rate of 2 ℃/min 
for 2 h, then the obtained powder is crushed in a mortar. The powder 
is heated again in a muffle furnace, from room temperature to 850 ℃ 
with a rate of 5 ℃/min for 3 h. The final powder with different value 
of x are named as BaM, Nd0.05-BaM, Nd0.1-BaM, Nd0.15-BaM, 
Nd0.20-BaM. 

GO is mixed into the BaM or Nd-BaM according to 1%, 3%, 5%, 6%, 
8%, 10% of the mass ratio (the mass ratio = GO/ BaM, or GO/Nd-BaM). 
The mixture is milled through ball milling equipment with an iron 
ball and an agate tank. The mass ratio of ball to powder is 10:1. The 
rotational speed of ball grinding is 300 rpm/min for 4 h. The re
sulting powder is the complex compound Nd-BaM/GO with different 
mass ratio. 

2.3. Characterizations 

The structure and phase of samples are identified from X-ray 
diffraction (XRD, D8 Advance Davinci, Germany, 40 kV and 40 mA of 
Cu Kα) at the scattering angle of 20° ≤ 2θ ≤ 80°. The morphologies of 
samples are observed by scanning electron microscopy (SEM, Zeiss 
Gemini 300, Germany). The thermal stabilities of the samples are 
characterized in air atmosphere with a heating rate of 10 ℃/min and 
a heating range of 50–800 ℃ (TG，STA 449F3, Germany). Raman 
spectra are recorded on a Raman spectrometer (Renishaw inVia 
Reflex, Britain) with Al Kα radiation. The temperature ranges from 
50 ℃ to 800 ℃. The vector network analyzer (VNA, Agilent N5225A) 
is used to measure the complex permittivity and permeability of 
compound material in the frequency range of 2–18 GHz with a de
manded shape sample. 

3. Results and discussion 

The phase of the samples is determined by XRD, and the typical 
diffraction pattern are as follows. All the peaks of the samples cor
respond to BaM peaks (Fig. 1). 

The peaks at 30.83°, 32.20°, 34.11°, 37.08°, 40.32°, 42.42°, 55.06°, 
56.33°, 56.60° and 63.06° of all samples in the XRD patterns are 
related to the (008), (107), (114), (203), (205), (206), (217), (304), 
(2011) and (1015) diffractions of BaM. After Nd doping, the XRD 
peaks of all samples slightly shift to the left. According to Braggs law: 

=d n2 sin (1) 

where d is the distance between parallel atomic planes, λ is the 
wavelength of the incident wave, θ is the angle between the incident 
light and the crystal plane and n is the number of reflection orders. 
The left shift of the diffraction peak means that the angle becomes 
smaller, that means crystalline interfacial spacing becomes larger 
(Fig. 1.a). In this paper, part of the Nd3+ replace the position of Fe3+, 
the ionic radius of Nd3+ is larger than Fe3+, so the unit cell parameter 
becomes larger, and the d value also becomes larger. The test results 
are consistent with the Braggs theory. The addition of GO has little 
effect on the characteristic diffraction peaks of Nd doped BaM, which 
indicates that no chemical reaction occurred between Nd doped BaM 
and GO (Fig. 1.b). The characteristic diffraction peak of GO is around 
10.5°, since the diffraction peak intensity of Nd doped BaM masks 
the diffraction peak of GO, so it is difficult to see the diffraction peak 
of GO from Fig. 1b at this angle. 

The grain size of Nd doped BaM is calculated by the XRD soft. It 
indicated that the more Nd element is doped, the smaller the grain 
size of the powder is obtained (Table 2), that means the addition of 
rare earth can inhibit the growth of grains. 

SEM morphology of the Nd-BaM/GO compound shows that as the 
proportion of GO is gradually increases, the GO flakes is also in
creasing (Fig. 2.a, b). BaM particles are attached to the GO sheet and 
the distribution is relatively even (Fig. 2.c). The particles are all na
noscale, ranging from 50 to 200 nm, with spherical and irregular 
shapes and some of them appear the state of agglomeration. Particle 
sintering temperature and magnetic properties are the main factors 
affecting agglomeration, usually it’s positively correlated. From the 
element distribution mapping (Fig. 2.c-Fe, Ba, C, O), the BaM parti
cles do adhere to the GO sheet. The content of rare earth Nd is too 
low to be detected. 

Fig. 1. XRD powder pattern of (a) Ndx-BaM (x = 0, 0.05, 0.1, 0.15, 0.2) and (b) Nd0.15-BaM/GO.  

Table 2 
The grain size of Nd doped BaM with different molar ratio.    

Composition/x Grain size/nm   

0  89.1  
0.05  79.1  
0.1  77.3  
0.15  62.3  
0.2  48.8    
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The real GO blending amount can be obtained by TG test. It 
clearly shows that the mass of the decomposed samples is different 
under the increasing temperature (Fig. 3). When the temperature is 
less than 100 ℃, the water molecules in the compound will evapo
rate and cause a slight loss of mass [41]. When the temperature is 
between 200 °C and 400 °C, GO begins to be thermally decomposed 
until around 500 °C, the curve tends to be flat, and GO is completely 
decomposed, so that the content of GO in the sample can be ana
lyzed. There is 1.27% loss item in the original Nd0.15-BaM material. 
That means the material is easy to absorb moisture. The mixing ratio 
of GO will also be affected by the moisture absorption of the original 
material, especially when the GO content is low. It can be seen from  
Fig. 3 that the true content of GO is slightly lower than the amount 
when it is added, since there will be a small amount of GO loss 
during the ball milling process. 

Fig. 2. SEM image of (a) Nd0.15-BaM/1%GO, (b) Nd0.15-BaM/10%GO, (c) EDS of Nd0.15-BaM/3%GO.  

Fig. 3. TG curves of Nd0.15-BaM and Nd0.15-BaM/GO under air atmosphere.  
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In order to further prove the existence of GO, the samples are 
analyzed by Raman spectroscopy (Fig. 4). The D peak of the samples 
is located at 1329 cm−1, and the D-peak is related to the lattice defect 
of carbon atoms. G peak is located at 1600 cm−1, which is related to 
the in-plane stretching vibration of the sp2 hybridization of carbon 
atoms [42], and proved the presence of GO in the samples. The D 
peak intensity of the sample with 3% GO is obviously higher than 
that of other samples, indicating that multiple defects are generated 
and the dipolar polarization is strengthened. 

The dielectric properties and magnetic properties of absorbing 
electromagnetic wave materials are determined by the complex 
permittivity (εr = ε′-jε″) and complex permeability (μr = μ′-jμ″) of the 
materials. The real part of the complex permittivity and the complex 
permeability represents the electromagnetic storage capacity, and 
the imaginary part represents the electromagnetic consumption 
capacity[43]. The change of ε′ is not regular with the influence of 
doping amount. The ε′ of Nd0.1-BaM is the largest, the curve is re
latively flat at low frequency and has obvious fluctuation at high 
frequency (Fig. 5.a). In terms of the relationship between the ε″ and 
frequency, the amount of doping has no obvious effect on the value 
of ε″ except Nd0.15-BaM has two sharp resonant peaks at 11.3 GHz 
and 12.7 GHz, so the electromagnetic waves consumption is more 
serious at these two frequencies (Fig. 5.b). The ε″ of Nd0.05-BaM and 
Nd0.2-BaM has a little different at about 13.3 GHz. Nd0.05-BaM has 
two obvious characteristic peaks, which will be caused by depolar
ization or interface polarization. The values ε″ of Nd0.2-BaM are al
most less than 0.2. That means the electromagnetic consumption 
capacity of Nd0.2-BaM is weaker than that of Nd0.05-BaM at this 
frequency range. 

The μ′ value is decreased with the increase of frequency. The 
imaginary permeability is also fluctuated slightly with frequency. 
Both Nd0.15-BaM and Nd0.2-BaM have obvious resonance peaks at 
10–15 GHz. These trends indicate that the addition of Nd increases 
the magnetic loss of the compounds (Fig. 5.c, d). 

When the GO content is 6%, 8% and 10%, the electromagnetic 
properties have little change (Fig. 6). Only Nd0.15-BaM/3%GO has 
both dielectric loss and magnetic loss, so it of a better microwave 

Fig. 5. (a) The real permittivity (ε′), (b) imaginary permittivity (ε″), (c) real permeability (μ′) and (d) imaginary permeability (μ″) of the Ndx-BaM.  

Fig. 4. Raman spectra of Nd0.15-BaM/1, 3, 5, 6, 8, 10%GO.  
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absorbing performance. The detailed explanation of this phenom
enon is presented in the following test results. 

The energy loss of electromagnetic waves causes the reflection 
loss. The reflection loss usually describes the absorbing performance 
of materials. According to the transmission line theory, RL can be 
calculated by the formulas as follows [44]: 

=
+

RL
Z Z
Z Z

20 log in

in
10

0

0 (2)  

µ
µ=Z Z j

fd
c

tanh
2

in
r

r
r r0

(3) 

where Zin represents the normalized input impedance of the ab
sorber, Z0 is the impedance of free space, μr is the complex perme
ability of the material, εr is the complex permittivity, f is the 
frequency of electromagnetic waves, d is the thickness of the ab
sorber, and c is the speed of light. 

Under different amounts of the Nd doping, RL changes with 
frequency and thickness. The performance of the samples has been 
slightly improved after Nd doping. At 2.0 mm and 2.5 mm, the RL 
value of the Nd-BaM is not ideal, which is caused by weak dielectric 
loss and impedance mismatch. After the mixing of pure BaM and GO 
by ball milling process, the absorbing performance of the sample is 
not improved significantly with the amount of GO, because the 

amount of GO is too small and does not have much influence on the 
dielectric properties of the compound material (Fig. 7.c, d). However, 
after mixing the same amount of GO with Nd-BaM through ball 
milling, we find that its microwave absorbing performance has been 
significantly improved (Fig. 7.e, f). At 2.0 mm, the absorption per
formance of Nd0.15-BaM/3%GO is the best, the reflection loss reaches 
− 82.07 dB at 12.65 GHz, and the effective absorption broadband 
(RL  < − 10 dB) is 6.08 GHz, and at 2.5 mm, the microwave absorbing 
performance of the material is similar to the performance when the 
thickness is 2 mm. In order to make the material meet the require
ments of light weight, the thickness of the material should be as thin 
as better. Nd element doped and GO additive are of a synergistic 
effect in the BaM material, which improve the microwave absorbing 
performance obviously. 

In order to further examine the absorbing performance of Nd0.15- 
BaM/3%GO, the various absorbing performance indicators is eval
uated at different thickness, frequency. The total effective absorption 
band is 6.67 GHz (9.99–16.66 GHz), and the minimum RL at 2.0 mm 
is − 82.07 dB, and the minimum RL is − 53.51 dB, which is much 
better than the performance of materials that GO compounds with 
other contents (Fig. 8.a). The higher ε′ and ε″ appear at 11–13 GHz. ε″ 
has two obvious relaxation peaks at 12.11 GHz and 13.05 GHz, which 
is caused by dipole polarization or interface polarization. The ima
ginary part and real part of its permeability remain basically un
changed at 2–18 GHz, with a tiny change around 14 GHz. The 

Fig. 6. (a) The real permittivity (ε′), (b) imaginary permittivity (ε″), (c) real permeability (μ′) and (d) imaginary permeability (μ″) of the Nd0.15-BaM/GO.  
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decrease of μ' and the increase of μ" directly lead to the increase of 
tan δμ, which is caused by domain wall resonance. Compared with ε' 
and ε", the μ' and μ" values of this sample are relatively low at 1.3 and 
0.1 (Fig. 8.b). The difference between the dielectric loss tangent 
(tan δε) and the magnetic loss tangent (tan δμ) of this compound 
material is small, and the similarity of tan δε and tan δμ is conducive 
to the impedance matching of the material [45]. The highest values 
of tan δε and tan δμ are 0.81 and 0.91, respectively, which proves that 
this material is an electromagnetic microwave absorbing material 
that cooperates with dielectric loss and magnetic loss, so it has the 
highest electromagnetic microwave absorption performance [46] 
(Fig. 8.c). Compared with similar materials reported in the literature 
(Table 3), especially their electromagnetic wave absorption 

properties. We can observe that Nd0.15-BaM/3%GO has a lowest RL 
value. Compared with the same thickness of material, its effective 
absorption band is wider, which also shows that Nd0.15-BaM/3%GO 
has a broad application background in lightweight electromagnetic 
wave absorption coatings. 

In summary, the excellent electromagnetic wave absorption 
performance of Nd0.15-BaM/3%GO can be explained from the fol
lowing aspects: (ⅰ) The nanocomposite has outstanding impedance 
matching, that means the incident electromagnetic wave can enter 
the interior of the compound well; (ⅱ) This material can form more 
interfaces, which provides rich interfacial polarization for the re
flection of electromagnetic waves; (ⅲ) The material obtained is 
composed of GO and Nd-BaM particles, which will cause dielectric 

Fig. 7. Reflection loss of (a-b) BaNdxFe12−xO19, (c–d) BaM/GO, (e-f) Nd0.15-BaM/GO with the absorber thickness of 2 mm and 2.5 mm.  
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loss and magnetic loss at the same time. The double loss mechanism 
is the key factor to improve the absorbing performance; (ⅳ) The 
defects and functional groups in GO can produce dipole polarization, 
it may contribute to the electromagnetic attenuation. 

4. Conclusion 

In summary, the compound materials of Nd-doped BaM with GO 
additive can be successfully prepared through two simple processes 
of sol-gel method and high-energy ball milling. The structure and 
morphology of the synthesized compounds are characterized by 
XRD, SEM, Raman, and TG. It can be clearly seen on the SEM that the 
magnetic Nd-BaM particles are attached to the surface of GO. 

Through the inspection of its dielectric loss and magnetic loss 
properties, it demonstrates excellent microwave absorption perfor
mance. The minimum reflection loss of Nd0.15-BaM/3%GO at 
12.65 GHz is − 82.07 dB and the effective bandwidth is 6.08 GHz 
when the coating thickness is 2.0 mm, which has the best perfor
mance compared with similar materials reported in the current lit
erature. With the apparent absorption loss and good impedance 
matching, this kind of nanocomposite can expand its application 
market. 
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